Tłumaczenie z języka angielskiego

CERTYFIKAT URZĄDZENIA

Inwertery fotowoltaiczne MID [17-40]KTL3-X (PPM Typ A, B)

Ze specyfikacjami i wersją oprogramowania wymienionymi w Załączniku 2

Wydano dla:

Shenzhen Growatt New Energy Co., Ltd.

4-13/F, Building A, Sino-German (Europe) Industrial Park, Hangcheng Ave,Bao'an District, Shenzhen, China
Zgodnie z:
DNVGL-SE-0124, 2016-03: Certyfikacja zgodności z kodeksem sieci
PTPiREE, 2021-04: Warunki i procedury wykorzystania certyfikatów w procesie przyłączenia modułów wytwarzania energii do sieci elektroenergetycznych
32016R0631, 2016-04: Wymagania dotyczące urządzeń wytwórczych (NC RfG)
PSE, 2018-12: Wymagania ogólnego stosowania wynikające z Rozporządzenia Komisji (EU) 2016/631 z dnia 14 kwietnia 2016
z opisem szczegółowym w Załączniku 1

Na podstawie dokumentu:
CR-GCC-DNVGL-SE-0124-08051-A072-0 Wymagania kodeksu sieci dla jednostek wytwarzania energii Typu A, B - Polska, Raport z certyfikacji, z dnia 2022-04-13
Dalsze informacje dotyczące oceny, w tym jej zakres i warunki, znajdują się w Załączniku 1. Opis inwerterów fotowoltaicznych oraz przeprowadzonych badań typu znajduje się odpowiednio w Załączniku 2 i Załączniku 3.

CERTYFIKAT URZĄDZENIA- ZAŁĄCZNIK 1

Numer certyfikatu
TC-GCC-DNVGL-SE-0124-08051-0

Warunki, kryteria oceny i zakres oceny

O ile warunki wymienione w punkcie 1 są brane pod uwagę na poziomie projektu, inwertery fotowoltaiczne, zgodnie z dalszą specyfikacją w Załączniku 2, spełniają wymagania w zakresie niniejszej certyfikacji, zgodnie z punktem 3.

1 Warunki

- Zmiany w projekcie systemu, wyposażeniu lub oprogramowaniu certyfikowanych inwerterów PV muszą być zatwierdzone przez DNV.
- Ustawienia inwertera muszą być ostatecznie uzgodnione i sprawdzone na poziomie projektu, aby zapewnić pełną zgodność z kodeksem sieci, w oparciu o wymagania właściwego operatora systemu (SO). Dla funkcjonalności objętych zakresem niniejszej certyfikacji, więcej informacji na temat ustawień poddanych ocenie znajduje się w części Ustawienia sterowania w punkcie 4.2 oraz w odnośnych punktach 5.1-5.8 dotyczących oceny z raportu certyfikacji CR-GCC-DNVGL-SE-0124-08051-A072-0.
- Możliwość zdalnego sterowania została przedstawiona na poziomie jednostki, jednak docelowo musi zostać zapewniona na poziomie projektu, z uwzględnieniem wszelkich dalszych wymagań właściwego operatora systemu (SO) oraz pełnej sieci komunikacyjnej.
Funkcjonalności objęte zakresem niniejszej certyfikacji:
Zdalne przerywanie generowania mocy czynnej,
- Zdalna regulacja wartości zadanej mocy czynnej,
- Zdalne blokowanie i sterowanie LFSM-O
jak określono w punktach 5.3-5.5 raportu z certyfikacji CR-GCC-DNVGL-SE-0124-08051-A072-0.

Kryteria oceny i odniesienia normatywne dla niniejszego certyfikatu:
Specyfikacja usługi DNVGL-SE-0124: Certyfikacja zgodności z kodeksem sieci, DNV GL, marzec 2016 r.
/B/ Warunki i procedury wykorzystania certyfikatów w procesie przyłączenia modułów wytwarzania energii do sieci elektroenergetycznych, wersja 1.2, PTPiREE, z dnia 28 kwietnia 2021 r. (opubl.: PTPiREE 2021-04)
/C/ Wymogi ogólnego stosowania wynikające z Rozporządzenia Komisji (UE) 2016/631 z dnia 14 kwietnia 2016 r. ustanawiającego kodeks sieci dotyczący wymogów w zakresie przyłączenia jednostek wytwórczych do sieci (NC RfG), PSE S.A., z dnia 18.12.2018 zatwierdzone Decyzją Prezesa Urzędu Regulacji Energetyki DRE.WOSE. $7128.550 .2 .2018 . Z \mathrm{~J}$ z dnia 2 stycznia 2019 r. (opubl.: PSE 2018-12)
/D/ Rozporządzenie Komisji (UE) 2016/631 z dnia 14 kwietnia 2016 r. ustanawiające kodeks sieci dotyczący wymogów w zakresie przyłączenia jednostek wytwórczych do sieci, opublikowane w Dzienniku Urzędowym Unii Europejskiej L112/1, Komisja Europejska, 27.04.2016, dokument nr 32016R0631, (opubl.: NC RfG).

CERTYFIKAT URZĄDZENIA- ZAŁĄCZNIK 1

Numer certyfikatu:
TC-GCC-DNVGL-SE-0124-08051-0

3 Zakres oceny i wyniki

Poniższe funkcjonalności zostały poddane ocenie w oparciu o zasady stosowania certyfikatów urządzeń dla modułów Power Park Module (PPM), jak określono w rozdziale 7 i 9 dokumentu PTPiREE 2021-04/B/. Funkcje w przypadku których w tabeli w rozdziale 7 wskazano "Nie dotyczy" nie zostały uwzględnione.

Parametr	NC RfG /D/	PSE 2018-12 /C/	Typ A	Typ B	Wynik oceny (**)
Zakres częstotliwości	13.1(a)	13.1(a)(i)	x	x	Zgodny
Zdolność wytrzymywania tempa zmian częstotliwości (RoCoF), df/dt	13.1(b)	13.1(b)	x	x	Zgodny
Zdalne przerywanie generowania mocy czynnej,	13.6	13.6	x	x	Zgodny
Zdalna regulacja wartości zadanej mocy czynnej,	14.2	14.2(b)		x	Zgodny
Tryb pracy z ograniczeniem generacji mocy czynnej w odpowiedzi na wzrost częstotliwości w sieci powyżej określonej wartości (LFSM-O)	13.2 (*)	13.2(a), (b), (f)	x	x	Zgodny
Zdolność do wytrzymania zapadów napięcia dla przyłączy poniżej 110 kV	14.3	14.3(a)(i), (b)		x	Zgodny
Wprowadzenie szybkiego prądu zakłóceniowego, zakłócenia symetryczne i asymetryczne	20.2(b), (c)	20.2(b), (c)		x	Zgodny
Pozakłóceniowe odtwarzanie mocy czynnej	20.3	20.3(a)		x	Zgodny

(*) Artykuł 13.2(b) ma zastosowanie wyłącznie do PPM typu A zgodnie z NC RfG.
(**) Należy również zwrócić uwagę na odnośne warunki zgodności określone w punkcie 1.

CERTYFIKAT URZĄDZENIA- ZAŁĄCZNIK 2

Numer certyfikatu:
TC-GCC-DNVGL-SE-0124-08051-0

Schematyczny opis i dane techniczne jednostek wytwórczych

1 Schematyczny opis jednostek wytwórczych

Rodzina inwerterów solarnych GROWATT MID [17-40]KTL3-X, w skład której wchodzą: MID 17KTL3-X1, MID 20KTL3X1, MID 22KTL3-X1, MID 25KTL3-X1, MID 30KTL3-X, MID 33KTL3-X, MID 36KTL3-X and MID 40KTL3-X służą do konwersji energii elektrycznej generowanej przez moduły fotowoltaiczne (DC) na trójfazowy prąd zmienny (AC)
Urzadzenia pracują przy znamionowym napięciu wyjściowym 400 V i znamionowej mocy czynnej od 17 kW do 40 kW . MID [17-33]KTL3-X(1) posiadają 3 trackery MPPT i 6 linii PV, natomiast MID [36-40]KTL3-X posiadają 4 trackery MPPT i 8 linii PV. Różnica ta nie ma jednak wpływu na funkcjonalności elektryczne będące przedmiotem certyfikacji, jak określono w sekcji 4.1 raportu certyfikacyjnego CR-GCC-DNVGL-SE-0124-08051-A072-0.

Dane elektryczne jednostki wytwórczej zestawiono w dalszej części rozdziału.

2 Dane techniczne głównych komponentów

Dane techniczne głównych komponentów, zgodnie z informacjami przekazanymi przez producenta podane są poniżej.
2.1 Specyfikacja ogólna

Jednostka wytwórcza	MID 17KTL3-X1	MID 20KTL3-X1	MID 22KTL3-X1	MID 25KTL3-X1
Liczba faz	3	3	3	3
Znamionowa moc pozorna	18.8 kVA	22 kVA	24.2 kVA	27.7 kVA
Znamionowa moc czynna	17 kW	20 kW	22 kW	25 kW
Napięcie znamionowe AC	400 Vac	400 Vac	400 Vac	400 Vac
Częstotliwość znamionowa	50 Hz	50 Hz	50 Hz	50 Hz
Jednosta wytwórcza	MID 30KTL3-X	MID 33KTL3-X	MID 36KTL3-X	MID 40KTL3-X
Liczba faz	3	3	3	3
Znamionowa moc pozorna	33.3 kVA	36.6 kVA	39.6 kVA	44 kVA
Znamionowa moc czynna	30 kW	33 kW	36 kW	40 kW
Napięcie znamionowe AC	400 Vac	400 Vac	400 Vac	400 Vac
Częstotliwość znamionowa	50 Hz	50 Hz	50 Hz	50 Hz

2.2 Wejśie DC

Jednostka wytwórcza	MID [17-25]KTL3-X1	MID [30-40]KTL3-X
Min. napięcie MPPT	200 Vdc	200 Vdc
Max. napięcie MPPT	1000 Vdc	1000 Vdc
Max. nap. wejściowe DC	1100 Vdc	1100 Vdc
Max. prad wejściowy DC	$26 \mathrm{~A}^{*} 3$	$26 \mathrm{~A}^{*} 4$

2.3 Wersja oprogramowania

Wersja Firmwaru	DM 1.0
Wersja oprogramowania	DM 1.0

2.4 Transformator jednostki

Transformator nie jest częścią jednostki wytwórczej i w związku z tym nie został uwzględniony w ocenie.

2.5 Ochrona sieci
 Ochrona nie jest objęta zakresem certyfikacji

CERTYFIKAT URZĄDZENIA- ZAŁĄCZNIK 2

Numer certyfikatu:
TC-GCC-DNVGL-SE-0124-08051-0

Interfejs sterowania pozwala na wybór różnych zestawów parametrów za pomocą aplikacji Shinebus lub interfejsu WebAPP.
W aplikacji Shinebus w polu "Mode" w ustawieniach jest możliwość wyboru pozycji "S23B08D00T36P0FU01M0190" odpowiadającej ustawieniom dla Polski. Interfejs WebAPP pozwala na zmianę przez wybranie "Poland(S23)". Zestaw parametrów zapewnia ustawienia domyślne w oparciu o kodeks sieci i wymagania krajowe.
Na potrzeby niniejszego raportu certyfikacyjnego ocenie pod kątem funkcjonalności w ramach niniejszej certyfikacji poddano zestaw parametrów o nazwie "Poland(S23)" w interfejsie WebAPP lub "S23B00D00T00P0FU01M0190" w aplikacji Shinebus. Ustawienia są domyślnie skonfigurowane na zgodność z wymaganiami typu B, zapewniając jednocześnie zgodność z wymaganiami typu A.
Należy zauważyć, że zgodność można osiągnąć również za pomocą innych zestawów parametrów i ustawień sterowania, ale zmiany ustawień sterowania będą miały wpływ na zachowanie sterowania falownika, co może mieć wpływ na zgodność. Należy zauważyć, że ostateczne ustawienia muszą być uzgodnione na poziomie projektu w porozumieniu z właściwym operatorem systemu.
Ustawienia zabezpieczeń nie zostały uwzględnione w ocenie. Ponieważ mogą one wpływać na zgodność ocenianych funkcji, należy je poddać dalszej ocenie na poziomie projektu.

CERTYFIKAT URZĄDZENIA- ZAŁĄCZNIK 3

Numer certyfikatu:
TC-GCC-DNVGL-SE-0124-08051-0

Badania typu

1 Badania typu

Badania wykonano w okresie pomiędzy 2021-10-27 i 2021-11-25 w laboratorium Growatt, w Shenzhen (Chińska Republika Ludowa).
Wszystkie badania zostały wykonane w ramach akredytacji ISO-17025 i przeprowadzono je na modelu MID 40KTL3-X.

Wyniki wykorzystane do oceny są udokumentowane w raporcie (raportach) z pomiarów, jak podano poniżej:

Zakres			Odwołanie
Zakres częstotliwości			Sekcja 3.1 z /1/
Zdolność wytrzymywania tempa zmian częstotliwości (RoCoF), df/dt zdalne wyłączenie produkcji mocy czynnej			Sekcja 3.2 z /1/
			Sekcja 3.3 z /1/
Zdalna regulacja wartości zadanej mocy czynnej,			Sekcja 3.4 z /1/
Tryb pracy z ograniczeniem generaeji mocy czynnej w odpowiedzi na wzrost częstotliwości w sieci powyżej określonej wartości (LFSM-O)			Sekcja 3.5 z /1/
Zdolność do pozostania w pracy podczas zwarcia (FRT)			Sekcja 4 z /1/
Wprowadzenie szybkiego prądu zakłóceniowego, zakłócenia symetryczne i asymetryczne			Sekcja 4 z /1/
Pozakłóceniowe odtwarzanie mocy czynnej			Sekcja 4 z /1/
Raport z badań	Numer dokumentu	Treść	
/1/	10298225-SHA-TR-07-A	Pomiar cha fotowoltaic TG3 Rewiz	erystyk regulacji m h typu MID 40KTL 5 i Polskim Kodek

Wyniki badań zostały ocenione pod kątem wymagań określonych w PSE 2018-12 /C/ i NC RfG /D/. Dalsze szczegóły zawiera odnośny raport z certyfikacji CR-GCC-DNVGL-SE-0124-08051-A072-0.

