Tłumaczenie z języka angielskiego

CERTYFIKAT URZĄDZENIA

Numer certyfikatu:	Wydano	Ważny do	Klasa GCC
TC-GCC-DNVGL-SE-0124-08050-0	$2022-04-13$	Bezterminowo	TC

Wystawiony dla:

Inwertery PV MIC [600-3300]TL-X (PPM Typ A)

Ze specyfikacjami i wersją oprogramowania wymienionymi w Załączniku 2

Wydano dla:

Shenzhen Growatt New Energy Co., Ltd.

4-13/F, Building A, Sino-German (Europe) Industrial Park, Hangcheng Ave,Bao'an District, Shenzhen, China

Abstract

Zgodnie z: DNVGL-SE-0124, 2016-03: Certyfikacja zgodności z kodeksem sieci PTPiREE, 2021-04: Warunki i procedury wykorzystania certyfikatów w procesie przyłączenia modułów wytwarzania energii do sieci elektroenergetycznych 32016R0631, 2016-04: Wymagania dotyczące urządzeń wytwórczych (NC RfG) PSE, 2018-12: Wymagania ogólnego stosowania wynikające z Rozporządzenia Komisji (EU) 2016/631 z dnia 14 kwietnia 2016 z opisem szczegółowym w Załączniku 1 Na podstawie dokumentu: CR-GCC-DNVGL-SE-0124-08050-A072-0 Wymagania kodeksu sieci dla jednostek wytwarzania energii Typu A - Polska, Raport z certyfikacji, z dnia 2022-04-13 Dalsze informacje dotyczące oceny, w tym jej zakres i warunki, znajdują się w Załączniku 1. Opis inwerterów fotowoltaicznych oraz przeprowadzonych badań typu znajduje się odpowiednio w Załączniku 2 i Załączniku 3.

CERTYFIKAT URZĄDZENIA- ZAŁĄCZNIK 1

Numer certyfikatu:
TC-GCC-DNVGL-SE-0124-08050-0

Warunki, kryteria oceny i zakres oceny

O ile warunki wymienione w punkcie 1 są brane pod uwagę na poziomie projektu, inwertery fotowoltaiczne, zgodnie z dalszą specyfikacją w Załączniku 2, spełniają wymagania w zakresie niniejszej certyfikacji, zgodnie z punktem 3.

1 Warunki

- Zmiany w projekcie systemu, wyposażeniu lub oprogramowaniu certyfikowanych inwerterów PV muszą być zatwierdzone przez DNV.
- Ustawienia inwertera muszą być ostatecznie uzgodnione i sprawdzone na poziomie projektu, aby zapewnić pełną zgodność z kodeksem sieci, w oparciu o wymagania właściwego operatora systemu (SO). Dla funkcjonalności objętych zakresem niniejszej certyfikacji, więcej informacji na temat ustawień poddanych ocenie znajduje się w części Ustawienia sterowania w punkcie 4.2 oraz w odnośnych punktach 5.1-5.4 dotyczących oceny z raportu certyfikacji CR-GCC-DNVGL-SE-0124-08050-A072-0.
- Możliwość zdalnego sterowania została przedstawiona na poziomie jednostki, jednak docelowo musi zostać zapewniona na poziomie projektu, z uwzględnieniem wszelkich dalszych wymagań właściwego operatora systemu (SO) oraz pełnej sieci komunikacyjnej. W przypadku funkcjonalności objętych zakresem niniejszej certyfikacji, dotyczy to zdalnego przerwania generowania mocy czynnej oraz zdalnego blokowania i sterowania LFSM-O, jak określono w punktach 5.3 i 5.4 raportu z certyfikacji CR-GCC- DNVGL-SE-0124-08050-A072-0.

2 Kryteria oceny i odniesienia normatywne dla niniejszego certyfikatu:
IA/ Specyfikacja usługi DNVGL-SE-0124: Certyfikacja zgodności z kodeksem sieci, DNV GL, marzec 2016 r.
/B/ Warunki i procedury wykorzystania certyfikatów w procesie przyłączenia modułów wytwarzania energii do sieci elektroenergetycznych, wersja 1.2, PTPiREE, z dnia 28 kwietnia 2021 r. (opubl.: PTPiREE 2021-04)
/C/ Wymogi ogólnego stosowania wynikające z Rozporządzenia Komisji (UE) 2016/631 z dnia 14 kwietnia 2016 r. ustanawiającego kodeks sieci dotyczący wymogów w zakresie przyłączenia jednostek wytwórczych do sieci (NC RfG), PSE S.A., z dnia 18.12.2018 zatwierdzone Decyzją Prezesa Urzędu Regulacji Energetyki DRE.WOSE.7128.550.2.2018.ZJ z dnia 2 stycznia 2019 r. (opubl.: PSE 2018-12).
/D/ Rozporządzenie Komisji (UE) 2016/631 z dnia 14 kwietnia 2016 r. ustanawiające kodeks sieci dotyczący wymogów w zakresie przyłączenia jednostek wytwórczych do sieci, opublikowane w Dzienniku Urzędowym Unii Europejskiej L112/1, Komisja Europejska, 27.04.2016, dokument nr 32016R0631, (opubl.: NC RfG).

3 Zakres oceny i wyniki

Poniższe funkcjonalności zostały poddane ocenie w oparciu o zasady stosowania certyfikatów urządzeń dla modułów Power Park Module (PPM), jak określono w rozdziale 7 i 9 dokumentu PTPiREE 2021-04/B/. Funkcje w przypadku których w tabeli w rozdziale 7 wskazano "Nie dotyczy" nie zostały uwzględnione.

Parametr	NC RfG /D/	PSE 2018-12 /C/	Typ A	Wynik oceny(*)
Zakres częstotliwości	13.1 (a)	13.1 (a)(i)	x	Zgodny
Zdolność wytrzymywania tempa zmian częstotliwości (RoCoF), df/dt	13.1 (b)	13.1 (b)	x	Zgodny
zdalne wyłączenie produkcji mocy czynnej	13.6	13.6	x	Zgodny
Tryb pracy z ograniczeniem generacji mocy czynnej w odpowiedzi na wzrost częstotliwości w sieci powyżej określonej wartości (LFSM-O)	13.2	13.2 (a), (b), (f)	x	Zgodny

(*) Należy również zwrócić uwagę na odnośne warunki zgodności określone w punkcie 1

CERTYFIKAT URZĄDZENIA- ZAŁĄCZNIK 2

Numer certyfikatu:
TC-GCC-DNVGL-SE-0124-08050-0
Schematyczny opis i dane techniczne jednostek wytwórczych

1 Schematyczny opis jednostek wytwórczych

Rodzina inwerterów solarnych GROWATT MIC [600-3300]TL-X, w skład której wchodza: MIC 600TL-X, MIC 750TL-X, MIC 1000TL-X, MIC 1500TL-X, MIC 2000TL-X, MIC 2500TL-X, MIC 3000TL-X and MIC 3300TL-X służą do konwersji energii elektrycznej generowanej przez moduły fotowoltaiczne (DC) na trójfazowy prąd zmienny (AC)
Urządzenia pracują przy znamionowym napięciu wyjściowym 230 V i znamionowej mocy czynnej od 0.6 kW to 3.3 kW . Różne warianty mocy wyjściowej są osiągane poprzez obniżanie jej wartości za pomocą oprogramowania.

Inne różnice w zastosowanym sprzęcie lub oprogramowaniu, jak podaje producent, nie występuja.
Dane elektryczne jednostki wytwórczej zestawiono w dalszej części rozdziału
2 Dane techniczne głównych komponentów
Dane techniczne głównych komponentów, zgodnie z informacjami przekazanymi przez producenta podane są poniżej.
2.1 Specyfikacja ogólna

Jednostka wytwórcza	MIC 600TL-X	MIC 750TL-X	MIC 1000TL-X	MIC 1500TL-X
Liczba faz	1	1	1	1
Znamionowa moc pozorna	600 VA	750 VA	1000 VA	1500 VA
Znamionowa moc czynna	600 W	750 W	1000 W	1500 W
Napięcie znamionowe AC	230 Vac	230 Vac	230 Vac	230 Vac
Częstotliwość znamionowa	50 Hz	50 Hz	50 Hz	50 Hz
Jednostka wytwórcza	MIC 2000TL-X	MIC 2500TL-X	MIC 3000TL-X	MIC 3300TL-X
Liczba faz	1	1	1	1
Znamionowa moc pozorna	2000 VA	2500 VA	3000 VA	3300 VA
Znamionowa moc czynna	2000 W	2500 W	3000 W	3300 W
Napięcie znamionowe AC	230 Vac	230 Vac	230 Vac	230 Vac
Częstotliwość znamionowa	50 Hz	50 Hz	50 Hz	50 Hz

2.2 Wejście DC

Jednostka wytwórcza	MIC 600TL-X, MIC 750TL-X	MIC 1000TL-X, MIC 1500TL-X, MIC 2000TL-X,	MIC 2500TL-X, MIC 3000TL-X, MIC 3300TL-X,
Min. napięcie MPPT	55 Vdc	80 Vdc	80 Vdc
Max. napięcie MPPT	490 Vdc	490 Vdc	540 Vdc
Max. nap. wejściowe DC	500 Vdc	500 Vdc	550 Vdc
Max. prąd wejściowy DC	13 A	13 A	13 A

2.3 Wersja oprogramowania

Wersja Firmwaru	GH1.0
Wersja oprogramowania	GH1.0

2.4 Transformator jednostki

Transformator nie jest częścią jednostki wytwórczej i w związku z tym nie został uwzględniony w ocenie.

2.5 Ochrona sieci

Ochrona nie jest objęta zakresem certyfikacj

CERTYFIKAT URZĄDZENIA- ZAŁĄCZNIK 2

Numer certyfikatu
TC-GCC-DNVGL-SE-0124-08050-0

2.6 Ustawienia sterowania

Interfejs sterowania pozwala na wybór różnych zestawów parametrów za pomocą aplikacji Shinebus lub interfejsu WebAPP.
W aplikacji Shinebus w polu "Mode" w ustawieniach jest możliwość wyboru pozycji "S23B00D00T00P0FU01M0021" odpowiadającej ustawieniom dla Polski. Interfejs WebAPP pozwala na zmianę przez wybranie "Poland(S23)". Zestaw parametrów zapewnia ustawienia domyślne w oparciu o kodeks sieci i wymagania krajowe.
Na potrzeby niniejszego raportu certyfikacyjnego ocenie pod kątem funkcjonalności w ramach niniejszej certyfikacji poddano zestaw parametrów o nazwie "Poland(S23)" w interfejsie WebAPP lub "S23B00D00T00P0FU01M0021" w aplikacji Shinebus.

Należy zauważyć, że zgodność można osiągnąć również za pomocą innych zestawów parametrów i ustawień sterowania, ale zmiany ustawień sterowania będą miały wpływ na zachowanie sterowania falownika, co może mieć wpływ na zgodność. Należy zauważyć, że ostateczne ustawienia muszą być uzgodnione na poziomie projektu w porozumieniu z właściwym operatorem systemu.
Ustawienia zabezpieczeń nie zostały uwzględnione w ocenie. Ponieważ moga one wpływać na zgodność ocenianych funkcji, należy je poddać dalszej ocenie na poziomie projektu.

CERTYFIKAT URZĄDZENIA- ZAŁĄCZNIK 3

Numer certyfikatu
TC-GCC-DNVGL-SE-0124-08050-0

Badania typu

1 Badania typu

Badania wykonano w okresie pomiędzy 2021-11-16 i 2021-11-25 w laboratorium Growatt, w Shenzhen (Chińska Republika Ludowa).

Wszystkie badania zostały wykonane w ramach akredytacji ISO-17025 i przeprowadzono je na modelu MIC 3300TL-X.

Wyniki wykorzystane do oceny są udokumentowane w raporcie (raportach) z pomiarów, jak podano poniżej:

Zakres	Odwołanie
Zakres czéstotliwości	Sekcja 3.1 z /1/
Zdolność wytrzymywania tempa zmian częstotliwości (RoCoF), df/dt	Sekcja 3.2 z /1/
zdalne wyłączenie produkcji mocy czynnej	Sekcja 3.3 z/1/
Tryb pracy z ograniczeniem generacji mocy czynnej w odpowiedzi na	Sekcja 3.4 z/1/
wzrost częstotliwości w sieci powyżej określonej wartości (LFSM-O)	

Raport z badań	Numer dokumentu	Treść
/1/	10298225-SHA-TR-05-A	Pomiar charakterystyk regulacji mocy i zdolności FRT inwerterów fotowoltaicznych typu MIC 3300TL-X zgodnie z FGW TG3 Rewizja 25 i Polskim Kodeksem Sieci,

Wyniki badań zostały ocenione pod kątem wymagań określonych w PSE 2018-12 /C/ i NC RfG /D/. Dalsze szczegóły zawiera odnośny raport z certyfikacji CR-GCC-DNVGL-SE-0124-08050-A072-0.

