







Download Manual

Shenzhen Growatt New Energy Co., Ltd 4-13/F,Building A,Sino-German(Eope) Industrial

4-13/F,Building A,Sino-German(Eope) Industrial Park, Hangcheng Ave, Bao'an District, Shenzhen, China

- **T** +86 0755 2747 1942
- E service@ginverterom
- ${\bm W} \ www.ginverter.com$

GRUM -226-A-01



### MP Solar Group

 Niniejsze tłumaczenie dokumentu stanowi własność intelektualną MP Solar Group sp. z o.o. z siedzibą przy ul.

 Kłodnickiej 56E w Rudzie Śląskiej, 41
 -706 NIP:6412532732. Kopiowanie, przetwarzanie, rozpowszechnianie

 tych materiałów w całości lub w
 części bez zgody autora jest zabronione.

## Spis treści

2

3

4F

5

| Krótkie wprowadzenie | 1.1 Wstęp<br>1.2 Grupa docelowa<br>1.3 Opis produktu<br>1.4 Instrukcje bezpieczeństwa                                                                                                                                                         |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bezpieczeństwo       | 2.1 Cel użytkowania<br>2.2 Środki bezpieczeństwa<br>2.3 Wprowadzenie symboli na<br>falowniku SPH                                                                                                                                              |
| Opis produktu.       | <ul><li>3.1 Growatt SPH series inverter</li><li>3.2 Label Explanation</li><li>3.3 Size and weight</li><li>3.4 The advantage of the unit of</li><li>Growatt SPH</li></ul>                                                                      |
| Pakowanie            |                                                                                                                                                                                                                                               |
| nstalacja            | <ul> <li>5.1 Basic installation requirements</li> <li>5.2 Installation requires tools and</li> <li>RJ 45 terminal sequence of the</li> <li>LAN line</li> <li>5.3 Installation Instructions</li> <li>5.4 SPH System Connection Mode</li> </ul> |

#### 6 Uruchomienie

# 7Uruchomienie i wyłączenie systemu SPH

8 Uwaga na środowisko instalacji, konserwacja i czyszczenie

9 Usuwanie usterek

10 Deklaracja zgodności UE

| <i></i>                        |
|--------------------------------|
| 6.1 Udzielanie zamówień na SPH |
| 6.2 Tryby pracy                |
| 6.3 Krajowe uwarunkowania      |
| 6.4 Wyświetlacz i przycisk     |
| 6.5 Komunikacja                |
| Ň                              |

7.1 Uruchomienie systemu SPH 7.2 Odłączenie systemu SPH

# 11Rozpoczęcie eksploatacji 11.1 Demontaż magazynu energii 11.2 Pakowanie falownika SPH 11.3 Przechowywanie falownika SPH 11.4 Utylizacja falownikaSPH 12 Specyfikacja produktu 12.1 Energia serii SPH firmy Growatt specyfikacja produktu maszyny do składowania 12.2 Parametry zacisków wejścia DC 12.3 Moment obrotowy 12.4 Załącznik 13 Certyfikat 14 Kontakt

### 1 Krótkie wprowadzenie

#### 1.1 Przedmowa

Niniejsza instrukcja dostarczy użytkownikom korzystającym z serii Growatt SPH TL3 BH-UP firmy Shenzhen Growatt New Energy Technology Co.,LTD (skrót od Growatt jak poniżej) szczegółowych informacji o produkcie i instrukcji instalacji. Prosimy o uważne przeczytanie niniejszej instrukcji i umieszczenie jej w miejscu dogodnym do instalacji, obsługi, uzyskania. Wszelkie modyfikacje Growatt new energy, nie będziemy powiadamiać użytkownika.

#### 1.2 Grupa docelowa

Falownik Growatt SPH TL3 BH-UP musi być zainstalowany przez profesjonalny personel elektryczny, który uzyskał certyfikat odpowiednich służb. Posiadamy dwa rodzaje maszyn do magazynowania energii dla różnych baterii, jedna jest dla baterii litowych, a druga dla baterii kwasowo-ołowiowych, sugerujemy: klient powinien zdecydować jaki rodzaj maszyny do magazynowania energii chce, Growatt może dostarczyć tylko baterię litową z maszyną do magazynowania energii, klient może wybrać maszynę do magazynowania energii kwasowo-ołowiowej bez baterii dostarczanej przez Growatt, podczas gdy może łatwo kupić te baterie na rynku. Szczególnie jeśli klient wybierze system magazynowania energii z akumulatorem litowym (który musi być dostarczony przez Growatt), ale użyje akumulatora kwasowo-ołowiowego lub użyje akumulatora kwasowo-ołowiowego do modelu z akumulatorem litowym, będzie to niebezpieczne. Instalator może zainstalować urządzenie magazynujące energię z serii Growatt SPH TL3 BH-UP szybko i bezproblemowo, zbudować system komunikacji poprzez dokładne przeczytanie niniejszej instrukcji. Jeśli masz jakiekolwiek pytania w procesie instalacji, możesz zalogować się na stronie www.growatt.com i zostawić wiadomość lub zadzwonić na naszą 24-godzinną infolinię serwisową+86 0755 2747 1942.

#### 1.3 Opis produktu

Seria Growatt SPH TL3 BH-UP służy do magazynowania energii wytworzonej przez panele ogniw fotowoltaicznych lub energii z sieci energetycznej, jeśli jest ona dozwolona w akumulatorze. Energia może być również przesyłana do sieci energetycznej przez SPH TL3 BH-UP w celu jej samodzielnego zużycia lub w przypadku utraty zasilania z sieci energetycznej, SPH TL3 BH-U może być wykorzystywana jako zasilanie rezerwowe.

- SPH 4000TL3 BH-UP
- SPH 5000TL3 BH-UP
- SPH 6000TL3 BH-UP
- SPH 7000TL3 BH-UP
- SPH 8000TL3 BH-UP
- SPH 10000TL3 BH-UP

Uwaga: opisujemy tę serię jako "SPH", jak poniżej.

#### Zestawienie:



Wykres 1.1

| Pozycja | Opis                                                    |
|---------|---------------------------------------------------------|
| А       | Dioda LED wskaźnika statusu                             |
| В       | Ekran LCD                                               |
| С       | Przycisk funkcyjny                                      |
| D       | Punkt naziemny                                          |
| E       | Odpowietrznik                                           |
| F       | Wyjście EPS (podłączenie poza siecią)                   |
| G       | RSD (nie otwierać, chyba że przez fachowy personel)     |
| Н       | Sieć AC (przy podłączeniu do sieci)                     |
| I       | Interfejs komunikacyjny Rs485(Zarezerwowany)            |
| J       | Interfejs komunikacyjny Rs485 licznika2(Zarezerwowane)  |
| К       | NTC: zacisk ołowiowego czujnika temperatury             |
| L       | Interfejs Rj45 urządzeń DRM (używany tylko w Australii) |
| М       | Interfejs komunikacyjny Rs485 miernika1                 |
| N       | Interfejs komunikacji CAN baterii litowej               |
| 0       | Interfejs USB                                           |
| Р       | Przełącznik PV                                          |
| Q       | Wejście fotowoltaiczne (PV)                             |
| R       | Zacisk baterii                                          |
| S       | Wejście bezsygnałowe                                    |
| Т       | Interfejs komunikacyjny Rs485 licznika2(Zarezerwowane)  |

#### 1.4 Zasady bezpieczeństwa

1.Proszę aby była jasność, jaki rodzaj systemu baterii chcesz, system baterii litowych lub system akumulatorów kwasowo-ołowiowych, jeśli wybierzesz zły system,SPH nie może pracować normalnie. 2.Proszę uważnie przeczytać tę instrukcję przed instalacją, Firma ma prawo do braku zapewnienia jakości, Jeśli nie zgodnie z instrukcjami niniejszej instrukcji przy instalacji spowodowano uszkodzenie sprzętu.

3.All the operation and connection please professional electrical or mechanical engineer.

3.Wszystkie operacje i połączenia powinny być wykonywane przez inżyniera elektryka lub mechanika. 5.Cała instalacja elektryczna musi być zgodna z lokalnymi normami bezpieczeństwa elektrycznego. 6.Jeżeli urządzenie wymaga konserwacji, należy skontaktować się z lokalnym specialista ds. instalacji i konserwacji systemu.

7.Użycie sprzetu do połaczenia z siecią wymaga uzyskania zgody lokalnego wydziału energetycznego.

8.Kiedy zainstalować moduły PV w ciągu dnia, proszę wyłączyć przełącznik PV, W przeciwnym razie bedzie to niebezpieczne, jak wysokie napiecie końcowe modułów w słońcu.

### 2 Bezpieczeństwo

#### 2.1 Cel użytkowania



Obciążenie EPS Jak pokazano powyżej, kompletny system SPH podłączony do sieci składa się z modułów PV, falownika SPH, akumulatora, sieci energetycznej i innych komponentów.

#### Uwaga:

Jako system odnoszą się do korzystania z baterii, musimy upewnić się, że wentylacja środowiska usług i kontroli temperatury w celu uniknięcia niebezpieczeństwa eksplozji baterii, zalecane środowisko instalacji baterii musi być ściśle zgodne ze specyfikacją, jeśli specyfikacja środowiska IP20, oraz stopień zanieczyszczenia jednostki jest PD2, tymczasem temperatura powinna być kontrola w 0-40 °C wentylacji wewnętrznej i wilgotności 5%-85%. Jeśli wybrane moduły fotowoltaiczne wymagają dodatniego lub ujemnego połączenia z ziemią, prosimy o kontakt z Growatt w celu uzyskania wsparcia technicznego przed instalacją.

#### 2.2 Środek bezpieczeństwa



|                             | Symbol                                         | Opis                        |  |  |
|-----------------------------|------------------------------------------------|-----------------------------|--|--|
|                             | Ostrożnie: Niebezpieczeństwo porażenia prądem! |                             |  |  |
| Uwaga: gorąca powierzchnia! |                                                | Uwaga: gorąca powierzchnia! |  |  |

|        | Uwaga: ryzyko niebezpieczeństwa!                                                                                                    |
|--------|-------------------------------------------------------------------------------------------------------------------------------------|
| ACE    | Zagrożenie dla życia z powodu wysokiego napięcia w SPH. W SPH<br>występuje napięcie szczątkowe, SPH wymaga 5 minut na rozładowanie. |
| s smin | Proszę odczekać 5 minut przed otwarciem górnej pokrywy lub pokrywy DC.                                                              |
|        | Zacisk przewodu ochronnego                                                                                                          |
|        | Prąd stały (DC)                                                                                                                     |
| $\sim$ | Prąd zmienny(AC)                                                                                                                    |
| CE     | Maszyna spełnia wymagania obowiązujących wytycznych CE                                                                              |
| i      | Należy zapoznać się z instrukcją obsługi.                                                                                           |

### 3 Opis produktu.

#### 3.1 Falownik Growatt serii SPH

#### Oznaczenia SPH

| Oznaczenia | Oznaczenia Opis Obj. |                                           |                             |  |
|------------|----------------------|-------------------------------------------|-----------------------------|--|
| ESC OK     | Przycisk             | Obsługa ekranu wyświetlacza i systemu usł |                             |  |
|            | Symbol statusu SPH   | Zielona lampka włączona                   | SPH pracuje normalnie       |  |
| Normal     |                      | Zapala się czerwona lampka                | stan uszkodzenia            |  |
| Fault      |                      | Mrugająca zielona lampka                  | Stan alarmowy               |  |
|            |                      | Mrugająca czerwona lampka                 | Aktualizacja oprogramowania |  |

#### 3.2 Objaśnienie etykiety

Etykieta zawiera następujące informacje: na przykład SPH 10000TL3 BH-UP pokazuje jak poniżej:

| Model name SPH 10000TL3 BH-UI            |                          |  |  |  |  |
|------------------------------------------|--------------------------|--|--|--|--|
| PV input data                            | •                        |  |  |  |  |
| Max.PV voltage                           | 1000 d.c.V               |  |  |  |  |
| PV voltage range                         | 120-1000 d.c.V           |  |  |  |  |
| PV lsc                                   | 16.9 d.c.A*2             |  |  |  |  |
| Max. input current                       | 13.5 d.c.A*2             |  |  |  |  |
| AC output/input data                     |                          |  |  |  |  |
| Nominal input/output<br>power            | 15000/10000 W            |  |  |  |  |
| Max. output apparent<br>power            | 10000 VA                 |  |  |  |  |
| Nominal voltage                          | 3W/N/PE<br>230/400 a.c.V |  |  |  |  |
| Max. input/output<br>current             | 22.7/15.2 a.c.A          |  |  |  |  |
| Nominal Frequency                        | 50/60 Hz                 |  |  |  |  |
| Power factor range                       | 0.8leading~0.8lagging    |  |  |  |  |
| Stand alone data                         |                          |  |  |  |  |
| Nominal AC output<br>power               | 10000 W                  |  |  |  |  |
| Nominal AC output<br>voltage             | 230/400 a.c.V            |  |  |  |  |
| Nominal AC output<br>Frequency           | 50/60 Hz                 |  |  |  |  |
| Battery data                             |                          |  |  |  |  |
| Battery voltage range                    | 100-550 d.c.V            |  |  |  |  |
| Max. charging and<br>discharging current | 25 d.c.A                 |  |  |  |  |
| Type of battery                          | Lithium/Lead-acid        |  |  |  |  |
| Others                                   |                          |  |  |  |  |
| Safety level                             | Class I                  |  |  |  |  |
| Ingress Protection                       | IP65                     |  |  |  |  |
| Operation Ambient<br>Temperature         | -25°C <b>-</b> +60°C     |  |  |  |  |
|                                          |                          |  |  |  |  |

Opis etykiety:

| Rodzaj produktu                           | Growatt SPH 10000TL3 BH-UP    |
|-------------------------------------------|-------------------------------|
| Dane wejściowe PV                         |                               |
| Max. Napięcie PV                          | 1000Vdc                       |
| Zakres napięcia fotowoltaicznego          | 120~1000Vdc                   |
| PV lsc                                    | 16.9 A*2                      |
| Maksymalny prąd wejściowy                 | 13.5 A*2                      |
| Dane wyjściowe/wejściowe prądu zmiennego  |                               |
| Maksymalna moc wyjściowa                  | 10000W                        |
| Maksymalna moc pozorna                    | 10000VA                       |
| Nominalne napięcie wyjściowe              | 3W/N/PE<br>230/400Vac         |
| Maksymalny prąd wyjściowy                 | 15.2A                         |
| Wyjście nominalne Częstotliwość wyjściowa | 50Hz/60Hz                     |
| Zakres współczynnika mocy                 | 0,8 wiodący~0,8 opóźniony     |
| Dane jednostkowe                          |                               |
| Nominalna moc wyjściowa AC                | 10000W                        |
| Nominalne napięcie wyjściowe AC           | 230/400Vac                    |
| Nominalna częstotliwość wyjściowa AC      | 50Hz/60Hz                     |
| Dane dotyczące baterii                    |                               |
| Zakres napięcia baterii                   | 100~550Vdc                    |
| Maks. prąd ładowania i rozładowania       | 25A                           |
| Rodzaj baterii                            | Litowe / ołowiowo-kwasowe     |
| Pozostałe                                 |                               |
| Poziom bezpieczeństwa                     | Klasa I                       |
| Ochrona przed wnikaniem do wnętrza        | IP65                          |
| Praca w temperaturze otoczenia            | -25 ℃~+60 ℃                   |
| Liczba świadectw                          | ( Dla modeli australijskich ) |

#### 3.3 Wielkość i waga



Wykres 3.1

|                       | A(mm) | B(mm) | C(mm)  | D(mm)  | waga(kg) |
|-----------------------|-------|-------|--------|--------|----------|
| Growatt SPH TL3 BH-UP | 505   | 544   | 198. 5 | 453. 5 | 33       |

#### 3.4 Zalety urządzenia Growatt SPH

Funkcje poniżej:

- Systko w jednym projekcie. Może poprawić samozużycie, cofnąć się, a także uszczypnąć dolinę.
- > Inteligentne zarządzanie, możliwość ustawienia trybu pracy.
- Bezpiecznie zastosowana bateria.
- Łatwa instalacja.
- Dwa wejścia mpp tracker.

### 4 Rozpakowywanie i kontrola

Przed rozpakowaniem proszę sprawdzić, czy nie ma widocznych uszkodzeń zewnętrznych. Po rozpakowaniu prosimy o sprawdzenie czy nie ma uszkodzeń lub braków części, jeśli tak się stanie prosimy o kontakt z dostawcą. Seria Growatt SPH wraz z akcesoriami przedstawia się następujaco:



#### Wykres 4.1

| Pozycja | Numer | Opis                                          |
|---------|-------|-----------------------------------------------|
| А       | 1     | Falownik SPH                                  |
| В       | 1     | Podręcznik użytkownika                        |
| С       | 1     | Płyta papierowa (instrukcja montażu)          |
| D       | 1     | Wodoodporna osłona                            |
| E       | 1     | Złącze sieci AC                               |
| F       | 1     | Złącze wyjściowe EPS (złącze czerwone)        |
| G       | 1     | Przewód komunikacyjny                         |
| Н       | 1     | Czujnik temperatury baterii kwasowo-ołowiowej |
| I       | 1     | Złącze typu Rj45                              |
| J       | 4     | Śruba nastawna M6                             |
| К       | 1     | Zacisk uziemiający                            |
| L       | 4     | Śruba nastawna M4                             |
| M/N     | 2/2   | Złącze Mc4 (czarne złącze)                    |
| O/P     | 1/1   | Złącze Mc4 (niebieskie złącze)                |
| Q       | 1     | Licznik elektroniczny                         |

5.1 Podstawowe wymagania dotyczące montażu

A. Miejsce montażu musi być odpowiednie dla ciężaru SPH przez długi okres czasu.

B. Miejsce montażu musi być zgodne z wymiarami SPH.

C. Nie należy instalować urządzenia na konstrukcjach zbudowanych z materiałów łatwopalnych lub termo labilnych.

D. Stopień ochrony przed wnikaniem to IP65, a stopień zanieczyszczenia to Pd2. Proszę zapoznać się z poniższym:



Wykres 5.1

E. Opcja instalacji baterii nie jest daleko od pozycji SPH, długość pomiędzy SPH a bateria nie powinna być wieksza niż 5m.

F. Temperatura otoczenia powinna wynosić -25 ~60 .

G. SPH można zainstalować w pionie lub odchylić się na płaszczyźnie, proszę odnieść się do poniższego:





Instalacja

H. Pozycja montażowa nie może uniemożliwiać dostępu do środków rozłączających.
I. Aby maszyna mogła pracować normalnie i była łatwa w obsłudze, należy zwrócić uwagę na zapewnienie odpowiedniej przestrzeni dla SPH, patrz poniżej:



Wykres 5.3

J. Nie należy instalować urządzenia w pobliżu anteny telewizyjnej lub jakichkolwiek innych anten i kabli antenowych.

K. Nie instaluj maszyny w części mieszkalnej.

L. Upewnij się, że maszyna znajduje się poza zasięgiem dzieci.

M. Biorąc pod uwagę miejsce mocowania akumulatora, proszę

sprawdzić wymiary w instrukcji obsługi.

N. Wokół baterii nie wolno umieszczać łatwopalnych i wybuchowych towarów niebezpiecznych, gdyż może to spowodować poważne niebezpieczeństwo.

5.2 Instalacja wymaga narzędzi oraz sekwencji zacisków RJ 45 linii LAN.

Podczas instalacji, musimy używać następujących narzędzi, przygotuj następujące narzędzia przed instalacją:





| No. | Opis                                 |  |  |  |
|-----|--------------------------------------|--|--|--|
| 1   | Naciśnij zacisk Rj45                 |  |  |  |
| 2   | Wcisnąć złącze biegunowe akumulatora |  |  |  |
| 3   | Odłączyć zacisk PV                   |  |  |  |
| 4   | Odkręcić nakrętkę                    |  |  |  |
| 5   | Odkręcić śrubę                       |  |  |  |
| 6   | Śruba rozprężna do wybijania         |  |  |  |
| 7   | Wywiercić otwory w ścianie           |  |  |  |

Kolejność podłączenia linii LAN RJ45 jest następująca:





Wykres 5.6

#### Kolory linii LAN 1-8 jak poniżej:

| PIN   | 1                     | 2            | 3                | 4         | 5                  | 6       | 7                | 8       |
|-------|-----------------------|--------------|------------------|-----------|--------------------|---------|------------------|---------|
| Kolor | Biały<br>pomarańczowy | pomarańczowy | Biały<br>zielony | Niebieski | Biały<br>Niebieski | Zielony | Biały<br>Brązowy | Brązowy |

#### 5.3 Instrukcja montażu

5.3.1 Uwaga Układ długość czujników pod uwagę

Growatt SPH4000-10000TL3 BH-UP używa tylko miernika jako swojego czujnika, przed zainstalowaniem systemu powinieneś wiedzieć coś takiego jak poniżej: 1.Długość przewodu miernika jest sugerowana nie dłuższa niż 15m. Z tego powodu należy rozważyć długość kabla pomiędzy SPH a skrzynką łączeniową. 2.Licznik musi być zamontowany w linii L.

3. Układ instalacji systemu magazynowania energii w domu przedstawia się następująco:





5.3.2 Instalacja SPH

1.Najpierw oszacuj wielkość inwertera na ścianie;

2.Wyznacz miejsce wywiercenia otworu przez karton (instrukcja montażu),przyłóż karton do ściany i upewnij się, że górna krawędź kartonu jest pozioma.3.Zaznacz cztery punkty na ścianie przez otwór kartonu, następnie usuń karton.

4.Wywierć cztery Φ8 otwory w miejscu znakowania, głębokość nie jest mniejsza niż 55mm.
5.Wbić cztery śruby eksplozyjne w otwory Φ8 (Jak w tabeli 5.8b poniżej).
6.Zawiesić maszynę do magazynowania energii na czterech wkrętach dociskowych (Jak na wykresie 5.8c poniżej).
7.Zablokuj nakrętkę śruby nastawnej (zgodnie z tabelą 5.8d poniżej).
8.Cały montaż został zakończony.











d)

Wykres 5.8

5.4 Tryb podłączenia systemu SPH 5.4.1 Podłączenie zacisku PV





Wykres 5.9

Podobnie jak w przypadku tradycyjnego łączenia falowników, wejście energii panelu PV może być realizowane za pomocą terminalu MC4 PV, szczegółowe kroki są następujące: Krok 1: Wyłącz przełącznik PV.

Krok 2: Włóż dodatnie i ujemne kable panelu PV do terminalu MC4, następnie podłącz dodatni biegun (+) kabla połączeniowego do dodatniego bieguna (+) złącza wejściowego PV, podłącz ujemny biegun (-) kabla połączeniowego do ujemnego bieguna (-) złącza wejściowego PV. Proszę zwrócić uwagę na napięcie i prąd wejściowy PV w ramach limitu zezwolenia:

- Maks. napięcie PV: 1000V (przy najniższej temperaturze)
- Maks. prąd wejściowy PV: 13,5A
- Max moc wejściowa PV na ciąg: 7500W.

#### Uwagi:

1. Do podłączenia proponujemy użyć kabla≥ 4mm2/12 AWG.

2. Proszę nie podłączać do źródła prądu stałego.

5.4.2 Podłączenie zacisku AC i zacisku off grid

SPH posiada terminal wyjściowy sieci i terminal wyjściowy poza siecią, patrząc z przodu na SPH, terminal po lewej stronie (na sieci) jest wyjściem sieciowym do podłączenia sieci, terminal po prawej stronie jest wyjściem bezprzewodowym do podłączenia obciążenia krytycznego.



Wykres 5.10

#### Przewód sugeruje długość:

|                     | maksymalna długość przewodu |                     |                     |                     |                     |                      |
|---------------------|-----------------------------|---------------------|---------------------|---------------------|---------------------|----------------------|
| przekrój poprzeczny | Growatt<br>SPH 4000         | Growatt<br>SPH 5000 | Growatt<br>SPH 6000 | Growatt<br>SPH 7000 | Growatt<br>SPH 8000 | Growatt<br>SPH 10000 |
| pizonoda            | TL3 BH                      | TL3 BH              | TL3 BH              | TL3 BH              | TL3 BH              | TL3 BH               |
| 10AWG               | 88m                         | 70m                 | 59m                 | 50m                 | 44m                 | 35m                  |
| 12AWG               | 55m                         | 44m                 | 37m                 | 31m                 | 27m                 | 22m                  |

Zacisk wyjściowy AC i zacisk wyjściowy EPS należy podłączyć w następujący sposób: Krok 1: Odinstaluj terminal AC zgodnie z poniższym schematem.



Zacisk przyłączeniowy

Tulejka pierścień gwintowana uszczelni

pierścień śruba uszczelniajacy dociskowa

Wykres 5.11

Krok 2: Przewlecz kable kolejno przez śrubę dociskową, pierścień uszczelniający, tuleję gwintowaną, włóż kable do zacisku przyłączeniowego zgodnie z podaną na nim polaryzacją i dokręć śruby.





Krok 3: Nasuń tuleję gwintowaną na zacisk przyłączeniowy, aż obie zostaną mocno zablokowane.



Wykres 5.13

Krok 4: Podłącz gniazdo do zacisku wyjściowego AC, obrót w prawo, aby dokręcić gniazdo, obrót w lewo, aby poluzować gniazdo.



Wykres 5.14



Wykres 5.16

Krok 3: Nasuń tuleję gwintowaną na zacisk przyłączeniowy, aż obie zostaną mocno zablokowane.



Wykres 5.17

Krok 4: Podłącz gniazdo do zacisku wyjściowego AC, aż zostanie zablokowane. Użyj płaskiego śrubokręta, aby przytrzymać klamrę i wyciągnąć zacisk AC.





Krok 5: Podłącz zacisk AC do portu AC falownika.



Wykres 5.19

Poniższy schemat pokazuje zacisk wyjściowy AC australijskiej maszyny kroki podłączenia, zacisk wyjściowy EPS kroki podłączenia zgodne z powyższymi krokami.

Zacisk wyjściowy AC i zacisk wyjściowy EPS należy podłączyć w następujący sposób: Krok 1: Odinstaluj terminal AC zgodnie z poniższym schematem.





Krok 2: Przewlecz kable kolejno przez śrubę dociskową, pierścień uszczelniający, tuleję gwintowaną, włóż kable do zacisku przyłączeniowego zgodnie z podaną na nim polaryzacją i dokręć śruby.

Zalecany schemat połączeń elektrycznych jest następujący:



Wykres 5.20

#### Uwaga:

Ten schemat jest przykładem dla systemu sieciowego bez specjalnych wymagań dotyczących połączenia przewodów elektrycznych.Linia neutralna jest konieczna.

#### Diagram B



Wykres 5.21

#### Uwaga:

Ten schemat jest przykładem dla australijskiego i nowozelandzkiego systemu sieciowego, gdzie linia neutralna nie może być przełączana. Linia neutralna jest niezbędna.



Wykres 5.22

#### Uwaga:

Ten schemat jest przykładem dla klienta, który chce korzystać tylko z systemu magazynowania w sieci. Linia neutralna jest konieczna.



- Jeśli chcesz używać tylko połączenia z zewnętrzną siecią energetyczną, zapoznaj się z tabelą 5.22 Podłączenie do sieci AC i platforma EPS wyjście.
- Jeśli nie masz teraz akumulatora, to możesz też uruchomić zacisk BAT, a ten falownik hybrydowy będzie działał tylko jak falownik PV.
- Jeśli chcesz korzystać zarówno z zasilania sieciowego, jak i rezerwowego, zapoznaj się z tabelą 5.20 i 5.21.Podłącz do sieci AC i EPS wyjście, jak pokazano na wykresie.
- Zacisk sieciowy i zacisk poza siecią nie mogą się bezpośrednio połączyć.
- Terminal (poza siecią) nie może podłączyć się do sieci.
- Pierwsze uruchomienie systemu wymaga zasilania z sieci.



Wyjście EPS nie obsługuje urządzeń takich jak suszarki do włosów z obciążeniem półfalowym.

#### 5.4.3 Podłączenie biegunów akumulatora

Podobnie jak w przypadku tradycyjnego podłączenia falownika, wejście baterii może być realizowane za pomocą terminalu MC4, szczegółowe kroki są następujące: Krok 1: Wyłącz przełącznik baterii.

Krok 2: Podłącz przewody dodatnie i ujemne panelu baterii do złącza Mc4, następnie podłącz dodatni biegun(+) przewodu łączącego do dodatniego bieguna(+) złącza wejściowego baterii, podłącz ujemny biegun(-) przewodu łączącego do ujemnego bieguna(-) złącza wejściowego baterii.

Proszę zwrócić uwagę na napięcie wejściowe baterii i prąd w ramach limitu zezwolenia:

- Maksymalne napięcie baterii: 550V
- Maksymalny prąd wejściowy z akumulatora: 25A
- Maksymalna moc wejściowa baterii : 10000W

#### Uwagi:

Sugerujemy użycie kabla ≥ 4mm2/10 AWG do podłączenia.



Wykres 5.23

#### Uwaga:

Sugerujemy, aby odległość między baterią a SPH nie była większa niż 5m, a obszar linii zasilającej musi być większy niż 10AWG.

#### 5.4.4 Podłączenie zacisku licznika

Jeśli odbiorca potrzebuje użyć licznika do monitorowania przepływu energii, kroki podłaczenia terminala licznika sa nastepujace: Krok1: Odnośnik 5.2, wykonaj kable LAN z końcówka Ri45. Krok2: Nakręć nakrętkę obrotową na kabel LAN. Krok3: Wyciśnij tuleje podtrzymująca kabel z dławika kablowego. Krok4: Wyjmij korek wypełniający z tulei podtrzymującej kabel. Krok5: Poprowadź kabel LAN przez otwór w tulei podtrzymującej kabel. Krok6: Przewlecz kabel LAN przez dławik kablowy. Krok 7: Włóż wtyczke RJ45 kabla sieciowego do złacza pinowego "METER" na falowniku aż do zatrzaśniecia. Krok8: Jeśli nie ma potrzeby instalowania innych kabli, zablokuj wodoszczelną pokrywe do falownika za pomoca śrub. Krok9: Nakreć nakretke obrotowa na osłone wodoodporna. Uwaga 1. Miernik musi być dostarczony przez Growatt. Jeśli nie, być może licznik nie może komunikować sie z SPH. 2. Szczegółowy opis instalacji miernika można znaleźć w instrukcji obsługi miernika.















#### Uwagi:

Przewód metrowy (o długości 15m) specyfikacja: RJ45, standardowa linia LAN (jeden koniec z wtyczką modularną 8P, drugi połączony z transformatorem). Ale jeśli długość nie jest wystarczająca, klient może dodać kabel,więc długość może być zwiększona do 25m max, operacja jest jak poniższy wykres:



5.4.5 Podłączenie zacisku komunikacyjnego dla baterii litowej (CAN)

W przypadku stosowania komunikacji CAN z bateriami litowymi (na przykład PYLONTECH X1), należy podłączyć zacisk baterii litowej (RJ45) w następujący sposób:

Krok1: Odkręć nakrętkę obrotową z dławika kablowego.

Krok2: Nakręć nakrętkę obrotową na kabel "CAN".

Krok3: Wyciśnij tuleję podtrzymującą kabel z dławika kablowego.

Krok4: Wyjmij korek wypełniający z tulei podtrzymującej kabel.

Krok5: Przeprowadzić kabel "CAN" przez otwór w tulei podtrzymującej kabel.

Krok6: Przewlecz kabel "CAN" przez dławik kablowy.

Krok 7: Włóż wtyczkę RJ45 kabla sieciowego do złącza pinowego "CAN"

na falowniku aż do zatrzaśnięcia.

Krok8: Jeśli nie ma potrzeby instalowania innych kabli, zablokuj wodoszczelną pokrywę do falownika za pomocą śrub.

Krok9: Nakręć nakrętkę obrotową na osłonę wodoodporną.



Wykres 5.28



Wykres 5.29

Uwaga: Jeśli używasz akumulatora kwasowo-ołowiowego, nie musisz instalować tego kabla komunikacyjnego.

5.4.6 Podłączenie zacisku RS 485

RS 485 zastrzeżony interfejs komunikacyjny, może być używany do komunikacji z licznikiem,

proszę podłączyć terminal (RJ45) w następujący sposób:

Krok1: Odkręć nakrętkę obrotową z dławika kablowego.

Krok2: Nakręć nakrętkę obrotową na kabel "Rs485".

Krok3: Wyciśnij tuleję podtrzymującą kabel z dławika kablowego.

Krok4: Wyjmij korek wypełniający z tulei podtrzymującej kabel.

Krok5: Poprowadź kabel "RS485" przez otwór w tulei podtrzymującej kabel.

Krok6: Przewlecz kabel "RS485" przez dławik kablowy.

Krok 7: Włóż wtyczkę RJ45 kabla sieciowego do złącza pinowego "485-1" lub "485-2" na falowniku aż do zatrzaśnięcia.

Krok8: Jeśli nie ma potrzeby instalowania innych kabli, zablokuj wodoszczelną pokrywę do falownika za pomocą śrub.

Krok9: Nakręć nakrętkę obrotową na osłonę wodoodporną.



Wykres 5.30



Wykres 5.31

5.4.7 Podłączenie terminalu DRMS (tylko Australia)

W przypadku zastosowania SPH w Australii należy podłączyć zaciski DRMS, sposób podłączenia wygląda następująco:

Krok1: Odkręć nakrętkę obrotową z dławika kablowego.

Krok2: Nakręć nakrętkę obrotową na przewód "DRMS".

Krok3: Wyciśnij tuleję podtrzymującą kabel z dławika kablowego.

Krok4: Wyjmij korek wypełniający z tulei podtrzymującej kabel.

Krok5: Poprowadź kabel "DRMS" przez otwór w tulei podtrzymującej kabel. Krok6: Przewlecz kabel "DRMS" przez dławik kablowy.

Krok 7: Włóż wtyczkę RJ45 kabla sieciowego do złącza pinowego "DRMS" na falowniku aż do zatrzaśniecia.

Krok8: Jeśli nie ma potrzeby instalowania innych kabli, zablokuj wodoszczelną pokrywę do falownika za pomocą śrub.

Krok9: Nakręć nakrętkę obrotową na osłonę wodoodporną.



Wykres 5.32



Wykres 5.33

#### Przyporządkowanie pinów terminala Rj45

| PIN | zadanie dla falownika zdolnego do ładowania i rozładowywania |
|-----|--------------------------------------------------------------|
| 1   | DRM5                                                         |
| 2   | DRM6                                                         |
| 3   | DRM7                                                         |
| 4   | DRM8                                                         |
| 5   | RefGen                                                       |
| 6   | COM/DRM0                                                     |
| 7   | /                                                            |
| 8   | /                                                            |

Metoda potwierdzania trybów reagowania na popyt

| TRYB | Gniazdo Rj45 asertywne przez zwarcie pinów |   | Wymagania                                                                                                    |
|------|--------------------------------------------|---|--------------------------------------------------------------------------------------------------------------|
| DRM0 | 5                                          | 6 | obsługa urządzenia odłączającego                                                                             |
| DRM5 | 1                                          | 5 | Nie wytwarzać energii                                                                                        |
| DRM6 | 2                                          | 5 | Nie należy generować więcej niż 50% mocy znamionowej znamionowej                                             |
| DRM7 | 3                                          | 5 | Nie wytwarzaj więcej niż 75% mocy znamionowej<br>znamionowej i zrzucaj moc bierną,<br>,jeśli jest to możliwe |
| DRM8 | 4                                          | 5 | Zwiększenie produkcji energii (z zastrzeżeniem ograniczeń wynikających z innych aktywnych DRM)               |

#### Uwaga:

Jeśli kabel taki jak "NTC" (czujnik temperatury akumulatora kwasowo-ołowiowego) nie jest używany, proszę nie wyjmować korka wypełniającego z tulei podtrzymującej kabel.

5.4.8 Podłączenie sondy temperatury dla akumulatora kwasowo-ołowiowego

Gdy klient używa akumulatora kwasowo-ołowiowego, sonda temperatury akumulatora kwasowo-ołowiowego jest używana do wykrywania temperatury otoczenia akumulatora kwasowo-ołowiowego, kabel temperatury akumulatora strony SPH, kroki połączenia są następujące: Krok1: Odkręć nakrętkę obrotową z dławika kablowego. Krok2: Nakręć nakrętkę obrotową na kabel "NTC". Krok3: Wyciśnij tuleję podtrzymującą kabel z dławika kablowego. Krok4: Wyjmij korek wypełniający z tulei podtrzymującej kabel. Krok5: Poprowadzić kabel "NTC" przez otwór w tulei podtrzymującej kabel. Krok6: Przewlec kabel "NTC" przez dławik. Krok7: Włóż wtyczkę RJ45 kabla sieciowego do złącza pinowego "NTC" na falowniku aż do zatrzaśnięcia. Krok8: Jeśli nie ma potrzeby instalowania innych kabli, zablokuj wodoszczelną

pokrywę do falownika za pomocą śrub.

Krok9: Nakręć nakrętkę obrotową na osłonę wodoodporną.



Wykres 5.34



Wykres 5.35

#### Uwaga:

1. Jeśli używasz baterii litowej, nie musisz instalować tej sondy temperatury, sonda przewodu temperatury powinna być przymocowana do otoczenia akumulatora kwasowo-ołowiowego, a długość tego kabla wynosi 1,5 m.,

więc zwróć uwagę na odległość akumulatora i SPH.

2. Jeśli kabel taki jak "NTC" (czujnik temperatury akumulatora kwasowo-ołowiowego) nie jest używany, proszę nie usuwać korka wypełniającego z tulei podtrzymującej kabel.

#### 5.4.9 Podłączenie styku beznapięciowego

Styk beznapięciowy służy do komunikacji z urządzeniami zewnętrznymi (takimi jak zdalny start podgrzewacza wody). Kroki okablowania są następujące: Krok1: Odkręć nakrętkę obrotową z dławika kablowego. Krok2: Nakręć nakrętkę obrotową na przewód. Krok3: Wyciśnij tuleję podtrzymującą kabel z dławika kablowego. Krok4: Wyjmij korek wypełniający z tulei podtrzymującej kabel. Krok5: Poprowadź kabel sieciowy przez otwór w tulei podtrzymującej kabel. Krok6: Przewlecz kabel sieciowy przez dławik kablowy. Krok7: Nawlecz kabel sieciowy przez dławik kablowy. Krok7: Nawlecz kabel na zacisk przyłączeniowy falownika, następnie dociśnij zacisk za pomocą odpowiednich narzędzi i upewnij się, że kable są mocno osadzone. Krok8: Jeśli nie ma potrzeby instalowania innych kabli, zablokuj wodoszczelną pokrywę do falownika za pomocą śrub. Krok9: Nakreć nakretke obrotowa na osłone wodoodporna.









#### Uwaga:

1.Jeśli kabel taki jak "Dry contact" nie jest używany, proszę nie usuwać korka wypełniającego z tulei podtrzymującej kabel.

2. Dry kontakt może dać 12V i mniej niż 200mA wyjście źródła do przekaźnika i tak dalej. Proszę uważać na pojemność tej mocy.

#### 5.4.10 Przyłącze uziemienia

SPH musi być uziemiony kablem, punkt uziemienia jest pokazany w następujący sposób, a minimalna średnica przewodu uziemiającego wynosi 10.0mm2.



Wykres 5.38

Uziemienie matrycy fotowoltaicznej

Przewód uziemiający wsporników paneli PV musi być trwale połączony z ziemią po stronie matrycy PV oraz po stronie falownika i SP. Powierzchnia przekroju przewodu uziemiającego powinna być równa powierzchni przekroju przewodu uziemiającego DC. Minimalna średnica przewodu wynosi 10,0mm2.

Uziemienie prądu stałego

Wybierz tryb uziemienia DC zgodnie z lokalnym standardem i użyj skrzynki zaciskowej uziemienia PV oraz przewodów uziemienia DC o tej samej specyfikacji. Urzadzenie uziemiajace

Jeśli w systemie PV konieczne jest uziemienie dodatniego lub ujemnego bieguna matrycy PV, wyjście falownika powinno być izolowane przez transformator izolacyjny. Transformator izolacyjny musi być zgodny z normą IEC62109-1,-2.

Podłączenie jak poniżej:



### 6 Uruchomienie

#### 6.1 Udzielanie zamówień na SPH

Elektryzowanie SPH po zakończeniu wszystkich instalacji Part5, oto kroki:

- Podłączenie PV
- Podłączenie prądu zmiennego
- Podłączenie baterii
- Najpierw włącz AC
- Następnie należy włączyć baterię
- Ostatnia tura na PV

Jeśli sieć PV i akumulator są dostępne, system pracowałby w trybie "normalnym". Gdy SPH pracuje w trybie normalnym, ekran pokazuje "normal", dioda LED jest zielona, jeśli SPH nie wejdzie w tryb normalny pomyślnie, zwłaszcza LCD jest czerwony, należy sprawdzić poniżej:

- Upewnij się, że wszystkie połączenia są prawidłowe.
- Wszystkie zewnętrzne przełączniki są włączone.
- Wbudowany w falownik wyłącznik jest włączony.
- Upewnij się, że bateria litowa jest włączona.
- W celu dokonania korekty należy odnieść się do części 9.1.

W celu ustawienia trybu pracy należy zapoznać się z częścią 6.4.4, a następnie skonfigurować monitor i zakończyć uruchamianie.

#### 6.2 Tryby funkcjonowania

#### 6.2.1 Tryb normalnej pracy

Tryb normalny jest stanem roboczym, który obejmuje tryb online i tryb zapasowy.

#### Tryb online

Użytkownik może ustawić odpowiedni tryb priorytetowy zgodnie z żądaniem, gdy SPH pracuje w trybie online. Jeśli klient używa ustawień LCD i klawiszy, można ustawić tylko jeden okres, ale jeśli używa ustawień strony internetowej, można ustawić do trzech okresów trybu priorytetowego. (Patrz 6.4.4)

Load first: Load first jest trybem domyślnym, kiedy pracuje w tym trybie, energia PV będzie oferowana do obciążenia i akumulatora przed; kiedy PV jest niewystarczające, akumulator rozładuje się; kiedy PV jest wystarczające dla obciążenia, nadmiar energii będzie zasilać akumulator. Jeśli nie ma baterii lub bateria jest pełna, nadmiar energii zostanie przekazany do sieci (z wyjątkiem antyrefluksu). Battery first: gdy SPH pracuje w trybie Grid-first, energia z PV będzie w pierwszej kolejności dostarczana odpowiednie do pracy w okresie, kiedy ładunek elektryczny jest niski. Użytkownik musi ustawić czas włączenia i wyłączenia trybu oraz czas zakończenia SOC baterii. Użytkownik może ustawić moc, która jest mniejsza niż maksymalna moc wyjściowa baterii. Jeśli klient nie włączy funkcji AC CHG (AC grid charging functions). Inwerter będzie ładował baterię za pomocą mocy PV tak dużej jak to możliwe. Jeśli klient włączy funkcję AC CHG (funkcje ładowania z sieci AC). Inwerter będzie ładował baterię za pomocą energii PV i prądu zmiennego z sieci w zakresie, w jakim jest to możliwe. Grid-first, energia z PV będzie w pierwszej kolejności dostarczana do sieci. Użytkownik może wybrać okres, w którym ładunek elektryczny jest wysoki.Użytkownik może ustawić czas włączenia i wyłączenia trybu oraz czas zakończenia SOC baterii. Użytkownik może ustawić mosi ustawić czas włączenia i wybie Grid-first, energia z PV będzie w pierwszej kolejności dostarczana do sieci. Użytkownik może wybrać okres, w którym ładunek elektryczny jest wysoki.Użytkownik może ustawić czas włączenia i wyłączenia trybu oraz czas zakończenia SOC baterii. Użytkownik może ustawić moc, która jest mniejsza niż maksymalna moc wyjściowa baterii.

• Tryb awaryjny

W przypadku utraty sieci, system przełączy się w tryb awaryjny (użytkownik może go wyłączyć , patrz 6.4.4) i na wyjściu AC z portu EPS LOAD, cała energia z PV i akumulatora, jeśli PV również utraci moc, to tylko rozładowanie akumulatora. Należy pamiętać, że maksymalna moc wyjściowa SPH w tym trybie wynosi 10000W, obciążenie podłączone do EPS LOAD powinno być mniejsze niż 10000W.

UWAGA:

Użytkownik może ustawić tylko jeden okres dla baterii i Grid first na LCD, jeśli użytkownik potrzebuje ustawić więcej prosimy o zalogowanie się do shineservera Jeśli użytkownik potrzebuje Grid ładowania baterii, użytkownik musi wprowadzić hasło na powierzchni SC i ustawić AC CHG do włączenia.

#### 6.2.2 Tryb awaryjny

Inteligentny system kontroli SPH może monitorować i regulować status systemu w sposób ciągły, gdy SPH inwerter monitorujący cokolwiek nieoczekiwanego się stanie, takiego jak błąd systemu lub błąd maszyny, LCD wyświetli informacje o błędzie, w trybie błędu, światło LED będzie świecić.

- UWAGA:
- Informacje o usterkach detalu znajdują się w punkcie 9.1
- Niektóre informacje o usterkach mają na celu przypomnienie użytkownikom, że po stronie falownika mogą wystąpić usterki.

#### 6.2.3 Tryb programowania

Tryb programowania wskazuje, że SPH jest w trakcie aktualizacji, nie należy odłączać zasilania podczas aktualizacji aż do zakończenia przetwarzania, falownik SPH wyloguje się automatycznie po zakończeniu aktualizacji i przejdzie w inny tryb.

#### 6.2.4 Tryb sprawdzający

Zanim SPH zacznie pracować w normalnym trybie, przejdzie w tryb samosprawdzenia. Jeśli wszystko jest w porządku, system przejdzie do trybu normalnego, w przeciwnym razie przejdzie do trybu awaryjnego.

#### 6.2.5 Tryb oczekiwania

Gdyby system nie miał usterek, a warunek nie został zakwalifikowany, SPH pozostałby w trybie czuwania.

#### 6.2.6 Tryb wyłączania

Jeśli klient potrzebuje, aby falownik SPH przestał działać, musi odłączyć wszystkie źródła energii wtedy falownik SPH automatycznie przejdzie w tryb wyłączenia. Poniżej przedstawiono procedurę wyłączenia:

- > Wyłączenie strony PV
- Wyłączyć przełącznik baterii.

> Odłącz zasilanie AC SPH. Następnie można zobaczyć, że diody LED i wyświetlacz LCD SPH są wyłączone. UWAGA:

Po wykonaniu wszystkich czynności trzeba jeszcze poczekać ponad 5 minut.

#### 6.3 Krajowe uwarunkowania

Growatt może zapewnić różne regulacje maszyny, po tym jak klienci otrzymają maszynę, zgodnie z ich krajem/regionem, przez LCD, aby ustawić odpowiednie regulacje. proszę wybrać odpowiednią opcję podczas instalacji Inwertera Growatt. Poniżej przedstawiono ekran LCD.

| Kraj/region | Wyświetlacz regulacji | Model wyświetlacza |  |
|-------------|-----------------------|--------------------|--|
|             | VDE0126               | GT0XXXXX1          |  |
|             | Niemcy                | GT0XXXXX1          |  |
|             | VDE-AR-N4110          | (NULL)             |  |
|             | Belgia                | GT0XXXXXD          |  |
|             | Polska                | GT0XXXXXB          |  |
|             | Francja               | GT1XXXXX9          |  |
| EU model    | Hiszpania             | GT0XXXXX0          |  |
|             | Austria               | GT1XXXXXE          |  |
|             | Dania_DK1             | GT1XXXXX7          |  |
|             | Dania_DK2             | GT1XXXXXB          |  |
|             | Szwecja               | GT1XXXXX6          |  |
|             | Norwegia              | (NULL)             |  |
|             | Szwajcaria            | (NULL)             |  |
|             | Bułgaria              | (NULL)             |  |
|             | Grecja                | GT0XXXXX2          |  |
|             | Estonia               | (NULL)             |  |
|             | EN50549               | GT1XXXXXD          |  |
|             | Czechy                | GT2XXXXX3          |  |

| -                | VDE0126          | GT0XXXXX1       |
|------------------|------------------|-----------------|
|                  | Tunezja          | (NULL)          |
|                  | Ukraina          | (NULL)          |
|                  | VDE-AR-N4105     | GT0XXXXX7       |
|                  | IEC62116&61727   | GT0XXXXXC       |
| Model ogólny     | RPA              | GT1XXXXXC(NULL) |
|                  | Dubaj            | (NULL)          |
|                  | Chile            | (NULL)          |
|                  | Argentyna        | (NULL)          |
|                  | Urugwaj          | (NULL)          |
|                  | Inne             | (NULL)          |
|                  | CEI 0-21         | GT0XXXXX4       |
| Włochy           | CEI 0-16         | (NULL)          |
| Wearv            | Weary            | GT0XXXXXC       |
|                  | G98              | GT0XXXXX8       |
|                  | G99              | GT0XXXXX5       |
| Wielka Brytania  | Irlandia         | GT1XXXXX3       |
|                  | NI G98           | (NULL)          |
| _                | NI G99           | (NULL)          |
|                  | AS4777           | GT4XXXXX3       |
| _                | Nowa Zelandia    | GT5XXXXX8       |
| -                | Queensland       | GT4XXXXX2       |
|                  | AU Victoria      | GT4XXXXX1       |
|                  | AU Western       | GT4XXXXX4       |
| Australia        | ALL Horizon      | GT4XXXXX5       |
|                  |                  | GT4XXXXX6       |
|                  |                  | GT4XXXXXX       |
|                  | All Ergon Energy | GT4XXXXX8       |
|                  |                  | GT4XXXXXX       |
| _                | All sa network   |                 |
|                  | Brazylia         |                 |
| Brazylia –       | Brazylia 240V    |                 |
| Makauk           | Makovk           |                 |
| INIEKSYK         | IVIERSYK         |                 |
| Indie            | Indie            |                 |
| Korea            |                  |                 |
| Tajwan           |                  |                 |
| Tailandia        | Tajwan TPC       |                 |
| rajiandia        |                  |                 |
| VA/i a tra a rea | PEA              |                 |
| vvietnam         | vvietnam         |                 |
| CQC              | CQC              | GIUXXXXXA       |
|                  | CQC 1            | GT1XXXXX1       |

#### 6.4 Wyświetlacz i przycisk

6.4.1 Obszar wyświetlania LCD



| vvykics 0. | Wy | kres | 6. | • |
|------------|----|------|----|---|
|------------|----|------|----|---|

| Lokalizacja | Opis                                                                                |
|-------------|-------------------------------------------------------------------------------------|
| A           | Stan                                                                                |
| В           | Informacje                                                                          |
| С           | Wejście PV (jeśli podłączysz dwa tory, pokaże dwa, w przeciwnym razie pokaże jeden) |
| D           | Falownik SPH                                                                        |
| E           | Linia przepływu energii elektrycznej                                                |
| F           | Sieć                                                                                |
| G           | Bateria (pokaż SOC w pięciu kratkach, każda kratka reprezentuje 20%)                |
| Н           | Obciążenie lokalne                                                                  |
| I           | Łączność bezprzewodowa                                                              |
| J           | RS232                                                                               |
| К           | RS485                                                                               |
| L           | Brzęczyk (Zarezerwowane)                                                            |
| М           | Ostrzeżenie                                                                         |
| N           | Usterka                                                                             |

#### 6.4.2 Instrukcje dotyczące diod i przycisków



| Lokalizacja | Opis                                |  |
|-------------|-------------------------------------|--|
| А           | Status                              |  |
| В           | Przycisk ESC- (anulowanie kontroli) |  |
| С           | Przycisk w dół                      |  |
| D           | Przycisk Enter                      |  |
| E           | Przycisk UP                         |  |

#### Uwaga:

Dioda LED pokazująca stan SPH, ma dwa kolory, jeden zielony, drugi czerwony. Proszę przejść do punktu 3.1 i przeczytać szczegóły dotyczące diody LED.

#### 6.4.3 Kolumna wyświetlacza LCD

Kolumna wyświetlacza LCD służy do pokazywania aktualnego stanu, podstawowych informacji i i informacji o usterce. Zawiera również ustawienia języka, priorytet ładowania/rozładowywania programu oraz czas systemowy. W stanie domyślnym informacje będą wyświetlane na zmianę.



Wykres 6.3

Informacje końcowe linii A są następujące:

- Stan czuwania: SPH jest w stanie czuwania. W tym stanie nie ma błędu, ale z innych powodów spraw, by był w stanie oczekiwania.
- Stan normalny: SPH jest normalnym stanem pracy.
- Stan sprawdzania: SPH jest w stanie samosprawdzenia, jeśli nie ma błędu lub ostrzeżenia, SPH przejdzie do stanu normalnego lub stanu czuwania. W przeciwnym razie przejdzie do stanu błędu.
- Stan programowania: SPH jest w stanie aktualizacji firmware.
- Stan usterki: SPH ma informację o usterce, będzie w stanie zatrzymanej ochrony operacyjnej.

Informacje dotyczące linii B jak poniżej:

W normalnych warunkach, będzie włączał stronę automatycznie, po naciśnięciu przycisku "UP", kolejność informacji stron jak poniżej:



#### Wykres 6.4

#### Uwaga:

- "Dół" komenda sterująca ( jeśli wciśniemy przycisk "góra", komenda cofnie się ).
- Jeśli SPH jest w stanie normalnym, będzie pokazywał "normal". Jeśli SPH jest w stanie czuwania, będzie wyświetlany jako "czuwanie" itd.
- Wyjaśnione są niektóre specjalne definicje, na przykład: Vb oznacza napięcie baterii. Cb oznacza pojemność baterii litowej (tylko bateria litowa pokazuje te dane). Pm oznacza moc monitora użytkownika.

#### 6.4.4 Ustawienie trybu pracy

Możesz wejść na stronę ustawień poprzez długie naciśnięcie "enter" przez 3S, na tej stronie, możesz nacisnąć "enter" lub "ESC" przez 1S, aby zakończyć wybór, strona pokazuje się jak poniżej:



Wykres 6.5

Jeśli wybierzesz CEI i użyjesz falownika SPH we Włoszech, falownik SPH posiada funkcję Auto Test. Jak korzystać z funkcji Autotest. Proszę zapoznać się z załącznikiem. 1.Pod Basic Para, można zobaczyć opcje ustawień poniżej po naciśnieciu Enter dla 1S:



#### Wykres 6.6

W podstawowych parametrach można ustawić język (angielski, włoski, niemiecki), czas systemowy, Lead-acid LV(minimalne napięcie pojedynczej baterii, domyślnie 11,5V), kwas ołowiowy LV(minimalne napięcie pojedynczej baterii, domyślnie 11,5V), kwas ołowiowy CC(maksymalny prąd ładowania i rozładowania baterii, domyślnie 25A), kwas ołowiowy CV(maksymalne napięcie pojedynczej baterii, domyślnie 14,5V), kwas ołowiowy Numer (liczba podłączonych baterii, domyślnie 12).

2.Pod EPS, po naciśnięciu Enter widać poniższe opcje ustawień:



Uwaga:

1.Gdy EPS Disable & Bypass: OFF, w żadnym wypadku nie ma wyjścia na porcie EPS;

2.Gdy EPS Enable & Bypass: OFF, port EPS nie ma wyjścia, gdy jest sieć energetyczna, a port EPS ma wyjście, gdy nie ma sieci energetycznej,
a obciążenie musi być przełączane przez ATS;
3.Gdy EPS Disable & Bypass: ON, port EPS ma wyjście, gdy jest sieć energetyczna, a port EPS nie ma wyjścia, gdy nie ma sieci energetycznej;
4.Gdy EPS Enable & Bypass: ON, na porcie EPS jest wyjście w każdych okolicznościach (Normalny tryb pracy modeli EU).

S.Gdy przekaźnik N\_PE jest włączony, przekaźnik N-PE jest zamknięty w trybie off-grid (w tym czasie linia EPS-N i linia EPS-PE będą połączone), a rozłączony w innych trybach. Gdy przekaźnik N\_PE jest wyłączony, przekaźnik N-PE pozostaje otwarty w każdych okolicznościach.

W EPS można ustawić m.in. włączenie lub wyłączenie (domyślnie włączone), napięcie AC (domyślnie 230V) oraz częstotliwość (domyślnie 50HZ).

3.Pod Priorytetem, po naciśnięciu Enter widać poniższe opcje ustawień:



#### Uwaga:

- "Power Rate" służy do ustawienia mocy baterii. Tak więc różne baterie mogą mieć różną moc, klient musi sprawdzić maksymalną moc baterii.
- Ustawienie czasu jest 24-godzinne. Jeśli czas zakończenia jest mniejszy niż czas rozpoczęcia, domyślnie ustawia się na dni rozpiętości.

4.Pod zmianą trybu, po naciśnięciu Enter, można zobaczyć poniższe opcje ustawień:



W typie baterii można wybrać baterię litową lub kwasowo-ołowiową.

5.Pod DiagnoseFun, możesz uruchomić "DiagnoseFun" po zakończeniu instalacji.



Uwaga:

1.Po każdym kroku testu jest OK, na wyświetlaczu LCD pojawia się napis PASS, należy odczekać 10s, a następnie przejść do następnego testu.

2.Po wykryciu, należy nacisnąć OK, aby wyjść.

3.Po zakończeniu wszystkich testów należy nacisnąć przycisk OK, aby potwierdzić i wyjść. 4.Odłącz PV, EPS, obciążenie, włącz BAT i tylko sieć, a następnie uruchom DiagnoseFun.

Gdy DiagnoseFun nie powiedzie się, proszę nacisnąć przycisk OK i sprawdzić poniższą tabelę, aby potwierdzić przyczynę problemu.

| Komunikat błędu       | Opis                                                          | Propozycja                                                                                              |
|-----------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| awaria komunikatora1  | Błąd komunikacji z<br>miernikiem1                             | Sprawdź, czy linia komunikacyjna<br>pomiędzy miernikiem1 a falownikiem<br>jest dobra, czy nie.          |
| BattChrOrDisFail      | Bateria nie może się<br>normalnie ładować<br>lub rozładowywać | Sprawdź, czy na wyświetlaczu LCD<br>pojawiają się komunikaty o błędach<br>związanych z baterią lub BMS. |
| Nieprawidłowy przewód | Błąd okablowania miernika1                                    | Sprawdź czy kolejność faz linii<br>zasilającej Meter1 jest prawidłowa.                                  |
| awaria komunikatora2  | Błąd komunikacji z miernikiem2                                | Sprawdź, czy linia komunikacyjna<br>pomiędzy miernikiem2 a falownikiem<br>jest dobra, czy nie.          |

6.Pod Limitem eksportu, po naciśnięciu Enter, można zobaczyć opcje ustawień poniżej:



#### Notatka:

Ustawienie ExportLimit ON i SingleExport OFF. Kontrola ExportLimit w sumie;
 Ustawienie ExportLimit ON i SingleExport ON. Sterowanie ExportLimit w trybie jednofazowym;
 LoadFstCtrl: Aktywacja jednofazowa lub Włączenie trzech faz. .Jeśli ustawiono SiEn, ExportLimit w pojedynczej fazie przy LoadFirst. Ustawienie ThEn, ExportLimit w sumie przy LoadFirst.

Limit eksportu jest używany przez użytkowników do kontrolowania energii płynącej do sieci. Jeśli ta funkcja jest włączona, moc zasilająca sieć będzie równa lub mniejsza od wartości ustawionej.Celem funkcji Fail Safe jest zapewnienie, że jeśli jakakolwiek część ELS ulegnie awarii, moc czynna eksportowana przez punkt połączenia spadnie do uzgodnionej mocy eksportu lub mniej w określonym czasie.

#### Notatka:

• Gdy włączone jest całkowite przeciwdziałanie przepływowi zwrotnemu (EXPORT LIMIT ), całkowite przeciwdziałanie przepływowi zwrotnemu jest skuteczne.

• Jednofazowy anti-backflow działa tylko wtedy, gdy jednocześnie włączony jest jednofazowy anti-backflow (SingleExport) i całkowity anti-backflow (Export Limit ).

7. W ramach ustawienia RS485, po naciśnięciu Enter można wybrać tryb komunikacji Rs485:



Wykres 6.12

#### Notatka:

•Domyślnie tryb ten jest nieużywany.

W trybie ShineMaster, SPH wejdzie w tryb równoległy. W tym czasie musi być wyposażony w SEM-E i nie musi być podłączony do licznika. W trybie Meter2, SPH umożliwia podłączenie dwóch liczników Jeden służy do odczytu mocy magistrali, a drugi do odczytu mocy innych falowników. W trybie VPP, SPH umożliwia dostęp do zewnętrznych kontrolerów w celu dokonania odpowiednich ustawień dla SPH.

8. W ramach ustawienia Kraj/obszar, po naciśnięciu Enter można zmienić opcje bezpieczeństwa SPH: opcje bezpieczeństwa SPH:



Wykres 6.13

#### Notatka:

Domyślne przepisy bezpieczeństwa są ustawione fabrycznie. Określ region zgodnie z fabrycznymi przepisami bezpieczeństwa, LCD może ustawić tylko odpowiednie przepisy bezpieczeństwa regionu.

9. W ramach ustawienia Dry Connect można kontrolować godziny pracy zewnętrznych podgrzewaczy wody generatorów diesla i innych urządzeń, ustawiając SPH po naciśnięciu Enter:



#### Notatka:

Pozycja ustawień D-Bat w opcji generatora będzie wyświetlała różne parametry w zależności od rodzaju podłączonego akumulatora. Min.SOC będzie wyświetlany, gdy podłączony jest akumulator litowy, a Min. Vbat, gdy podłączony jest akumulator kwasowo-ołowiowy.

#### 10.Pod domyślnym zestawem, po naciśnięciu Enter widać poniższe opcje ustawień:



Wykres 6.15

Domyślnym ustawieniem jest "resume to default setting ", proszę nie używać go, jeśli nie jest to konieczne.

#### 6.5 Komunikacja

6.5.1 Korzystanie z portu USB-A

Port USB-A służy głównie do aktualizacji firmware. Poprzez połączenie USB, możemy szybko zaktualizować oprogramowanie urządzenia. Możesz zobaczyć USB-A jak poniżej:



Uwaga: USB jest używane tylko do aktualizacji firmware. Klient nie może używać go do ładowania.

6.5.2 Wykorzystanie portu 485-1/485-2

Port 485-1/485-2 jest rozszerzonym interfejsem 485 w SPH, który musi być używany w połączeniu z Ustawieniem RS485 w menu LCD do komunikacji z urządzeniami zewnętrznymi.



Wykres 6.17

Po ustawieniu w trybie ShineMaster schemat połączeń jest następujący:



Wykres 6.18

Port 485-1 pierwszego SPH jest podłączony do SEM-E poprzez kabel sieciowy, a port 485-2 jest podłączony do portu 485-1 następnego SPH poprzez kabel sieciowy i tak dalej aż do ostatniego SPH (SPH może być zastąpiony innymi falownikami obsługującymi funkcję ShineMaster). Uwaga: SPH musi być ustawiony na Load First. Schemat połączeń jest następujący:



6.5.3 Monitorowanie przez SPH

SPH posiada interfejs RS485. Użytkownicy mogą monitorować SPH za pomoca poniższych rozwiazań komunikacyjnych.

Notatka:

Te urządzenia monitorujące mogą być używane tylko z platformą monitorującą Shineserver / shinephone firmy Growatt. Wi-Fi-X / Shinelink sa połączone z falownikiem poprzez interfejs USB i używają terminalu komputerowego / lub telefonu komórkowego do monitorowania danych.



Wykres 6.25

# 6 $\Theta$ @@`@

milli

0 എ



### Uruchomienie i wyłączenie systemu SPH 7

7.1 Uruchomienie systemu SPH

Użytkownik może uruchomić falowniki SPH w następujących krokach: 1.Podłaczenie do PV. 2.Podłaczenie do sieci. 3.Podłaczenie do baterii. 4. Włączenie przełącznika na zmianę Sieci, akumulator i PV. 5.Gdy dioda LED zmieni kolor na zielony, informacja robocza na LCD oznacza pomyślne uruchomienie falownika SPH.

#### 7.2 Odłączenie systemu SPH

1.Wyłącz wszystkie wyłączniki i przełączniki. 2.Odłaczyć PV. 3.Odłączyć falownik. 4.Odłaczyć baterie. 5. Pociagnij do góry połaczenie AC PLUG. 6.Poczekać aż zgasną diody LED, wyświetlacz LCD, SPH zostanie całkowicie wyłączony. W przypadku ustawienia w trybie Meter2 schemat połączeń jest następujący:



Wykres 6.19

Jako host, SPH będzie otrzymywać informacje z dwóch liczników jednocześnie: pierwszy licznik (oryginalny licznik SPH) musi być podłączony do magistrali po stronie sieci, a linia komunikacyjna jest podłączona do portu Meter; drugi licznik musi być podłączony do wyjścia terminala falownika, linia komunikacyjna jest podłączona do portu 485-1/485-2.

W przypadku ustawienia trybu VPP, schemat połączeń jest następujący:



Zewnętrzny kolektor VPP jest podłączony do portu 485-1/485-2 poprzez kabel sieciowy, w tym czasie SPH będzie reagował na odpowiednie instrukcje wydawane przez VPP.

#### 6.5.3 Zastosowanie portu 485-3

Port 485-3 służy głównie do monitorowania połączenia z komputerem, użytkownicy mogą monitorować, ustawiać parametry i aktualizować oprogramowanie maszyny poprzez połączenie 485-3 z maszyną i komputerem, używając oprogramowania shinebus opracowanego przez Growatt. Jeśli potrzebujesz oprogramowania ShineBus, pobierz je z oficjalnej strony firmy Growatt.





Wykres 6.22

# 8 Uwaga na środowisko montażowe, konserwacja i czyszczenie

Wydajność odprowadzania ciepła jest bardzo ważna, gdy falownik SPH pracuje w środowisku o wysokiej temperaturze, lepsze odprowadzanie ciepła może zmniejszyć możliwość zatrzymania pracy falownika SPH. Falownik Growatt serii SPH bez wentylatora, więc należy do naturalnego chłodzenia, gorące powietrze z górnej części grzejnika, bateria tie-in,środowisko użytkowania dla IP65, proszę zwrócić uwagę na temperaturę środowiska instalacji, aby zapewnić bezpieczeństwo baterii i normalną pracę urządzenia.

Podczas używania baterii należy zwrócić uwagę na następujące informacje:

Ostrożnie: Nie wolno wyrzucać baterii do ognia. Baterie mogą eksplodować.

Ostrożnie: Nie należy otwierać ani uszkadzać baterii. Uwolniony elektrolit jest szkodliwy skóry i oczu. Może być toksyczny.

Ostrzeżenie: Akumulator może stwarzać ryzyko porażenia elektrycznego i dużego prądu zwarciowego. Podczas pracy z akumulatorami należy przestrzegać następujących środków ostrożności: a) zegarki, pierścionki lub inne metalowe przedmioty.

- b) Używai narzedzi z izolowanymi uchwytami.
- c) Nosić rekawice i buty gumowe.
- d) Nie należy kłaść narzędzi ani części metalowych oraz na bateriach.

 e) Przed podłączeniem lub odłączeniem zacisków akumulatora należy odłączyć źródło ładowania.
 f) Ustalić, czy akumulator nie jest przypadkiem uziemiony. W przypadku nieumyślnego uziemienia należy usunąć źródło z ziemi. Kontakt z jakąkolwiek częścią uziemionego akumulatora może spowodować porażenie prądem.

Prawdopodobieństwo takiego porażenia może być zmniejszone, jeśli takie uziemienie zostanie usunięte podczas instalacji i konserwacji (dotyczy urządzeń i zdalnych źródeł zasilania bateryjnego

#### nie posiadających uziemionego obwodu zasilania).

Jeśli falownik SPH nie działa z powodu przegrzania lub zbyt niskiej temperatury, rozwiąż to zgodnie z poniższymi metodami:

- Potwierdź, czy instalacja kanału powietrznego grzejnika jest rozsądna, wybierz odpowiednią pozycję przed instalacją.
- Jeśli podłączone są akumulatory kwasowo-ołowiowe, potwierdź, że akumulator NTC jest w dobrej instalacji.
- Potwierdzić, czy temperatura baterii jest zbyt wysoka, wysoka temperatura baterii może również prowadzić do braku działania SPH, w tym momencie, do wentylacji, chłodzenie lub nadal uchwyt do baterii.
- Jeśli temperatura jest niska, również może pojawić się niska temperatura ochrony baterii, bateria rozpocznie pracę z małym obciążeniem w niskiej temperaturze wyjścia, z powrotem do normalnego stanu aby działać normalnie, proszę być cierpliwym w tym czasie.
- Jeśli temperatura jest zbyt niska, możliwe jest, że bateria będzie chroniona przed niską temperaturą, w tym czasie proszę zwrócić uwagę na zakres temperatur roboczych wymienionych w specyfikacji książki.
- Serwisowanie akumulatorów powinno być wykonywane lub nadzorowane przez personel posiadający wiedzę na temat akumulatorów i wymaganych środków ostrożności.
- W przypadku wymiany baterii należy wymienić je na baterie lub zestawy baterii tego samego typu i w tej samej liczbie.
- Ogólne wskazówki dotyczące usuwania i instalowania baterii.

#### Adnotacja:

Wszystkie powyższe czynności powinny być wykonywane przez profesjonalną osobę, jeśli chcesz wykonać te prace, musisz upewnić się, że cały system jest wyłączony.

### Usuwanie usterek 9

Nasze produkty są przeprowadzane ze ścisłymi testami przed wyjęciem, jeśli są trudności operacyjne w procesie instalacji, prosimy o zalogowanie się na stronie www.ginverter.com. obeirzenie programu Q&A.

Kiedy wystąpi błąd falownika SPH, prosimy o poinformowanie naszej firmy i dostarczenie informacji związanych z SPH, będziemy mieli profesjonalny personel obsługi posprzedażowej, który odpowie na pytania.

Co trzeba podać w informacji o SPH :

- Numer seryjny.
- Model.
- Informacje na temat wyświetlacza LCD.
- Krótki opis zagadnień.
- Napięcie baterii.
- Napięcie i moc wejściowa PV na każdy ciąg.
- Napięcie i częstotliwość sieci energetycznej.
- Czy potrafisz opowiedzieć o problemie awarii? Jeśli potrafisz, to w jakiej sytuacji.
- Czy problem występował w przeszłości?
- Kiedy wystąpiła ta usterka? Pierwsza instalacja?

#### O baterii:

- Nazwa producenta oraz model baterii.
- Pojemność baterii.
- Napięcie wyjściowe baterii.
- Czas zakupu Baterii i częstotliwość jej używania.

#### 9.1 Lista informacji o błędach systemowych i propozycje ich usunięcia

| Komunikat ostrzegawczy |                                                                                   |                                                                                                                                                                                                                           |  |
|------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Komunikat o błędzie    | Opis                                                                              | Propozycja                                                                                                                                                                                                                |  |
| Ostrzeżenie 401        | Błąd komunikacji z licznikiem                                                     | Sprawdź, czy połączenie przewodów<br>między miernikiem a falownikiem<br>jest dobre, czy nie.                                                                                                                              |  |
| Ostrzeżenie 203        | Pv1 lub PV2 Zwarcie obwodu                                                        | <ol> <li>Sprawdź, czy dodatnie i ujemne<br/>wejście PV jest odwrócone.</li> <li>Ponownie włóż terminal PV,<br/>skontaktuj się z centrum serwisowym<br/>Growatt, jeśli restart nie<br/>może rozwiązać problemu.</li> </ol> |  |
| Ostrzeżenie 506        | Temperatura baterii poza<br>określonym zakresem dla<br>ładowania lub rozładowania | Sprawdź, czy temperatura<br>otoczenia baterii jest w zakresie<br>specyfikacji, czy nie.                                                                                                                                   |  |

| AC V Zakres zewnętrzny | Usterka napięcia sieciowego.<br>Proszę zapoznać się z lokalną<br>normą sieciową, aby uzyskać<br>więcej szczegółów dotyczących<br>częstotliwości sieci.            | <ol> <li>Sprawdź, czy napięcie AC jest<br/>w zakresie standardowego napięcia<br/>w specyfikacji.</li> <li>Sprawdź połączenie sieci<br/>czy jest dobre lub nie.</li> </ol>                                                                      |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC F Zasięg            | Usterka częstotliwości sieci.<br>Więcej szczegółów dotyczących<br>napięcia sieciowego można znaleźć<br>w lokalnym standardzie sieciowym.                          | <ol> <li>Sprawdź częstotliwość czy jest<br/>w zakresie specyfikacji lub nie.</li> <li>Uruchom ponownie falownik.</li> <li>Skontaktuj się z centrum serwisowym<br/>Growatt, jeśli ponowne włączenie<br/>nie może rozwiązać problemu.</li> </ol> |
| Usterka BMS COM        | Usterka komunikacji                                                                                                                                               | 1.Sprawdź czy Bateria litowa<br>jest otwarta czy nie.<br>2.Sprawdź połączenie baterii<br>litowej i falownika czy jest<br>dobre bądź nie                                                                                                        |
| Odwrócenie baterii     | Odwrócone zaciski baterii                                                                                                                                         | Sprawdź czy plus i minus baterii<br>są odwrócone czy nie.                                                                                                                                                                                      |
| BAT NTC otwarty        | NTC otwarty<br>(tylko dla akumulatora<br>kwasowo-ołowiowego)                                                                                                      | 1.Sprawdź temperaturę akumulatora<br>kwasowo-ołowiowego czy jest zainstalowany<br>Sprawdź temperaturę akumulatora<br>kwasowo-ołowiowego czy jest<br>dobrze podłączony czy nie.                                                                 |
| Bateria otwarta        | Otwarty zacisk baterii<br>(tylko w przypadku baterii litowej)                                                                                                     | 1.Sprawdź połączenie baterii<br>czy jest dobre bądź nie.<br>2.Sprawdź czy przełączniki między<br>akumulatorem a falownikiem<br>są wszystkie włączone czy nie.                                                                                  |
| Nadmiar obciążeń       | Ostrzeżenie o przeciążeniu wyjścia<br>EPS.Jeśli ostrzeżenie to wystąpi<br>Funkcja off-grid zostanie<br>zablokowana na jedną godzinę<br>i moc wyjściowa ponownie.  | Proszę o zmniejszenie obciążenia<br>wyjścia EPS.                                                                                                                                                                                               |
| Brak połączenia AC     | Nieużytek                                                                                                                                                         | 1.Proszę o potwierdzenie,<br>że siatka jest zagubiona lub nie.<br>2.Sprawdź połączenie sieci<br>czy jest dobre bądź nie.<br>3.Sprawdź czy przełączniki na<br>kablu są włączone czy nie.                                                        |
| Wyjście wysokie DCI    | Zbyt wysoki wyjściowy prąd stały.<br>Proszę zapoznać się z lokalną<br>normą sieciową dotyczącą czasu<br>odłączenia, gdy wyjściowy<br>prąd stały jest zbyt wysoki. | 1.Uruchomić ponownie falownik.<br>2.Proszę skontaktować się z centrum<br>serwisowym Growatt, jeśli restart<br>nie może rozwiązać problemu.                                                                                                     |

| Wysokie napięcie bat. | Napięcie baterii wyższe niż<br>560V | 1.Sprawdź napięcie baterii czy<br>jest w zakresie specyfikacji bądź nie.<br>2.Sprawdź połączenie baterii jeśli jest dobre<br>bądź nie. Jeśli bateria jest naprawdę<br>wyższa niż 560V. Proszę odłączyć<br>połączenie akumulatora i<br>sprawdzić inwerter. |
|-----------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Niskie napięcie bat.  | Napięcie baterii niższe<br>od 100 V | <ol> <li>Sprawdź rzeczywiste napięcie baterii.</li> <li>Sprawdź przewód baterii i falownika<br/>czy jest dobry lub nie.</li> </ol>                                                                                                                        |
| BMS Ostrzeżenie: XXX  | Ostrzeżenie o raporcie BMS          | <ol> <li>Sprawdź informacje ostrzegawcze z<br/>instrukcji obsługi baterii litowej.</li> <li>Proszę skontaktować się z centrum<br/>serwisowym Growatt, jeśli restart nie<br/>może rozwiązać problemu.</li> </ol>                                           |
| Błąd BMS:XXX          | Błąd w raporcie BMS                 | <ol> <li>Sprawdź informacje ostrzegawcze<br/>z instrukcji obsługi baterii litowej.</li> <li>Proszę skontaktować się z centrum<br/>serwisowym Growatt, jeśli restart<br/>nie może rozwiązać problemu.</li> </ol>                                           |
| EPS Volt Niskie       | Niskie napięcie wyjściowe EPS       | <ol> <li>Sprawdź obciążenie EPS. Jeśli<br/>wystąpiło przeciążenie, zmniejsz obciążenie.</li> <li>Uruchomić ponownie falownik.</li> </ol>                                                                                                                  |

|                     | Komunikat o błędzie                                       |                                                                                                                                                    |  |  |
|---------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Komunikat o błędzie | Opis                                                      | Sugestia                                                                                                                                           |  |  |
| Błąd 411            | Nieudana komunikacja wewnętrzna                           | 1.Uruchomić ponownie falownik.<br>2.Skontaktuj się z serwisem Growatt<br>jeśli ponowne uruchomienie<br>nie rozwiąże problemu.                      |  |  |
| Błąd 418            | Niezgodność wersji firmware<br>DSP i COM, błąd systemowy. | 1.Odczytaj wersję firmware<br>DSP i COM z LCD lub shinebus.<br>2.Sprawdź czy firmware jest prawidłowy.                                             |  |  |
| Błąd 303            | Falownik L N odwrócony lub<br>brak masy                   | <ol> <li>Sprawdź połączenie paneli PV i<br/>falownika czy jest dobre lub nie.</li> <li>Sprawdź PE falownika<br/>czy jest dobry lub nie.</li> </ol> |  |  |
| Błąd 405            | Błąd przekaźnika                                          | 1.Ponownie uruchomić falownik.<br>2.Proszę skontaktować się z centrum<br>serwisowym Growatt, jeśli restart<br>nie może rozwiązać problemu.         |  |  |

| Błąd 407            | Autotest nie powiódł się<br>(tylko we Włoszech)  | 1.Uruchomić ponownie falownik.<br>2.Proszę skontaktować się z<br>centrum serwisowym Growatt, jeśli<br>restart nie może rozwiązać problemu                              |
|---------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Izolacja PV Niska   | Zbyt mała izolacja PV                            | <ol> <li>Check the connection of PV<br/>panels and inverter is good or<br/>not.</li> <li>Check the PE of inverter is<br/>good or not.</li> </ol>                       |
| Usterka zwarcia OP  | Usterka zwarcia wyjścia EPS                      | 1.Check the load of EPS.<br>2.Check the output of EPS.<br>Especial not connect to grid.                                                                                |
| NTC Otwarty         | Nie udało się uzyskać<br>temperatury wewnętrznej | Please contact Growatt service center                                                                                                                                  |
| Błąd 406            | Model nie spełnia<br>wymogów certyfikacji        | Please check model set or check the DIP setting                                                                                                                        |
| Pozostałość Wysoka  | Zbyt duży prąd upływu                            | <ol> <li>Check the cable of inverter.</li> <li>Restart inverter.</li> <li>Please contact Growatt<br/>service center if restart can't<br/>solve the problem.</li> </ol> |
| Błąd 408            | Przekroczenie zakresu temperaturowego            | Please check the temperature<br>is in the range of specification<br>or not.                                                                                            |
| Wysokie napięcie PV | Napięcie PV wyższe niż w arkuszu danych          | Please check the voltage of PV<br>input is in the range of<br>specification or not.                                                                                    |

10 Deklaracja zgodności z przepisami UE

With the scope of EU directives: •2014/35/EU Low Voltage Directive (LVD) •2014/30/EU Electromagnetic Compatibility Directive (EMC) •2011/65/EU RoHS Directive and its amendment (EU)2015/863 Shenzhen Growatt New Energy Technology Co. Ltd confirms that the Growatt inverters and accessories described in this document are in compliance with the above mentioned

EU directives. The entire EU Declaration of Conformity can be found at www.ginverter.com.

#### 11.1 Demontaż magazynu energii

1.Disconnect the SPH inverter such as mentioned in section 7. 2.Disconnect the upper cable of SPH inverter.



Watch out the SPH's shell heat and prevent to scald Wait 20 minutes until the SPH cooling and then to disassembly!

3. Unscrew all the connecting cable.

4.Unscrew the radiator and wall-mounted anchor screw and then take down the machine from wall.

#### 11.2 Pakowanie falownika SPH

Usually placed SPH inverter in the packing box with tape sealing, If the SPH inverter cannot reoccupy, You can choose a cheap carton for packaging. Carton requirements must meet the size of the inverter and can support energy storage machine overall weight.

#### 11.3 Przechowywanie falownika SPH

Store SPH inverter in a dry place where ambient temperatures are always between -25°C and +60°C.

#### 11.4 Utylizacja falownika SPH



Do not dispose of SPH inverter together with household waste. Please accordance with the disposal regulations for electronic waste which apply at the installation site at that time. Ensure that the old unit and, where applicable, any accessories are disposed of in a proper manner.

### 12 Specyfikacja produktu

12.1 Specyfikacja produktu maszyny do magazynowania energii Growatt serii SPH

| Model                                          | SPH 4000          | SPH 5000                  | SPH 6000        | SPH 7000        | SPH 8000        | SPH 10000       |
|------------------------------------------------|-------------------|---------------------------|-----------------|-----------------|-----------------|-----------------|
| Specyfikacja                                   | II3 BH-UP         | 113 BH-UP                 | IIS BH-UP       | II3 BH-UP       | TI3 BH-UP       |                 |
| Dane wejściowe (DC)                            |                   |                           |                 |                 |                 |                 |
| Maks. zalecana moc PV<br>(dla modułu STC)      | 6000W             | 7500W                     | 9000W           | 10500W          | 12000W          | 15000W          |
| Max. Napięcie stałe                            | 1000V             | 1000V                     | 1000V           | 1000V           | 1000V           | 1000V           |
| Napięcie początkowe                            | 120V              | 120V                      | 120V            | 120V            | 120V            | 120V            |
| Napięcie nominalne                             | 600V              | 600V                      | 600V            | 600V            | 600V            | 600V            |
| Zakres napięcia MPP                            | 120~1000V         | 120~1000V                 | 120~1000V       | 120~1000V       | 120~1000V       | 120~1000V       |
| Liczba MPP trackerów                           | 2                 | 2                         | 2               | 2               | 2               | 2               |
| Liczba ciągów PV<br>na trackery MPP            | 1                 | 1                         | 1               | 1               | 1               | 1               |
| Maksymalny prąd wejściowy<br>na MPP trackery   | 13.5 A/<br>13.5 A | 13.5A/<br>13.5A           | 13.5A/<br>13.5A | 13.5A/<br>13.5A | 13.5A/<br>13.5A | 13.5A/<br>13.5A |
| Maks. prąd zwarciowy<br>dla MPP trackerów      | 16.9 A/<br>16.9 A | 16.9A/<br>16.9A           | 16.9A/<br>16.9A | 16.9A/<br>16.9A | 16.9A/<br>16.9A | 16.9A/<br>16.9A |
| Dane wyjściowe (AC)                            |                   |                           |                 |                 |                 |                 |
| Moc nominalna AC                               | 4000W             | 5000W                     | 6000W           | 7000W           | 8000W           | 10000W          |
| Max. Moc pozorna AC                            | 4000VA            | 5000VA                    | 6000VA          | 7000VA          | 8000VA          | 10000VA         |
| Nominalne napięcie/<br>zakres AC               |                   |                           | 230V/400\       | /; 310~476V     |                 |                 |
| Częstotliwość/<br>zakres sieci AC              |                   | 50/60Hz; 45~55Hz/55~65 Hz |                 |                 |                 |                 |
| Maks. prąd wyjściowy                           | 6.1A              | 7.6A                      | 9.1A            | 10.6A           | 12.1A           | 15.2A           |
| Współczynnik mocy<br>factor(@nominal<br>power) |                   |                           | I               | 1               |                 |                 |
| Regulacja współczynnika mocy                   |                   |                           | 0,8 wiodący     | ~ 0,8 leżący    |                 |                 |
| THDi                                           |                   |                           | <3              | \$%             |                 |                 |
| Typ podłączenia do sieci AC                    |                   |                           | 3W+             | N+PE            |                 |                 |
| Samodzielne (zasilanie AC)                     |                   |                           |                 |                 |                 |                 |
| Nominalna moc wyjściowa AC                     | 4000W             | 5000W                     | 6000W           | 7000W           | 8000W           | 10000W          |
| Max. Moc pozorna AC                            | 4000VA            | 5000VA                    | 6000VA          | 7000VA          | 8000VA          | 10000VA         |
| Nominalne napięcie AC                          |                   |                           | 230V/           | 400V            |                 |                 |
| Nominalna częstotliwość AC                     | 50/60Hz           |                           |                 |                 |                 |                 |
| Maks. prąd wyjściowy                           | 6.1A              | 7.6A                      | 9.1A            | 10.6A           | 12.1A           | 15.2A           |

| THDV                                                 |        |                      | < 3                             | 3%                          |                          |        |
|------------------------------------------------------|--------|----------------------|---------------------------------|-----------------------------|--------------------------|--------|
| Czas przełączania                                    | < 10ms |                      |                                 |                             |                          |        |
| Dane baterii DC                                      |        |                      |                                 |                             |                          |        |
| Zakres napięcia baterii                              |        |                      | 100~5                           | 550V                        |                          |        |
| Maks. prąd ładowania/<br>rozładowania                |        |                      | 25                              | A                           |                          |        |
| Moc ciągłego ładowania/<br>rozładowywania            | 4000W  | 5000W                | 6000W                           | 7000W                       | 8000W                    | 10000W |
| Rodzaj baterii                                       |        | bater                | ia litowa / ba                  | teria kwasow                | vo-ołowiowa              |        |
| Pojemność baterii                                    |        |                      | 7.68 ~                          | 76.8 kWh                    |                          |        |
| Wydajność                                            |        |                      |                                 |                             |                          |        |
| Maks. wydajność                                      | 97.6%  | 97.8%                | 98.0%                           | 98.2%                       | 98.2%                    | 98.2%  |
| Euro-eta                                             | 97.0%  | 97.2%                | 97.3%                           | 97.4%                       | 97.4%                    | 97.5%  |
| MAX. Wydajność ładowania/<br>rozładowania baterii    | 97.4%  | 97.4%                | 97.4%                           | 97.4%                       | 97.4%                    | 97.4%  |
| Urządzenia zabezpieczając                            | e      |                      | 1                               | •                           | 1                        | 1      |
| Zabezpieczenie przed<br>odwrotną polaryzacją DC      |        |                      | ta                              | ak                          |                          |        |
| Zabezpieczenie przed<br>odwrotnym działaniem baterii | tak    |                      |                                 |                             |                          |        |
| Przełącznik prądu stałego                            | tak    |                      |                                 |                             |                          |        |
| Ochrona przed przepięciami DC                        |        |                      | Тур                             | be II                       |                          |        |
| Monitorowanie<br>rezystancji izolacji                |        |                      | t                               | ak                          |                          |        |
| Ochrona przed przepięciem AC                         |        |                      | Тур                             | o II                        |                          |        |
| Zabezpieczenie<br>przeciwzwarciowe AC                |        |                      | ta                              | ak                          |                          |        |
| Monitorowanie zwarć z gruntem                        |        |                      | ta                              | ak                          |                          |        |
| Monitorowanie sieci                                  |        |                      | ta                              | ak                          |                          |        |
| Ochrona przed pracą<br>wyspową                       |        |                      | ta                              | ak                          |                          |        |
| Jednostka monitorująca<br>prąd różnicowy             |        |                      | ti                              | ak                          |                          |        |
| Dane ogólne                                          |        |                      |                                 |                             |                          |        |
| Wymiary (szer. / wys. / gł.)                         |        |                      | 544*505*                        | 198.5mm                     |                          |        |
| Waga                                                 |        |                      | 33                              | kg                          |                          |        |
| Zakres temperatury pracy                             | Zo     | - 25<br>bniżeniem wa | °C ~ +60 °C(·<br>artości znamio | –13 °F ~ +14<br>onowej powy | ŀ0 °F)<br>rżej 45 °C (11 | 3 °F)  |

| Emisja hałasu (typowa)    | ≤ 35 dB(A)                                                                                                                                       |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Wysokość                  | 3000m                                                                                                                                            |
| Samodzielna konsumpcja    | <13W                                                                                                                                             |
| Topologia                 | Beztransformatorowa                                                                                                                              |
| Chłodzenie                | Naturalne                                                                                                                                        |
| Stopień ochrony           | IP65                                                                                                                                             |
| Wilgotność względna       | 0~100%                                                                                                                                           |
| Przyłącze prądu stałego   | H4 / MC4 (opcjonalnie)                                                                                                                           |
| Przyłącze prądu zmiennego | Złącze                                                                                                                                           |
| Podłączenie baterii       | H4 / MC4 (opcjonalnie)                                                                                                                           |
| Interfejsy .              |                                                                                                                                                  |
| Wyświetl                  | LCD+LED                                                                                                                                          |
| RS485/CAN/USB             | tak                                                                                                                                              |
| RF/WIFI/GPRS/4G           | opcjonalnie                                                                                                                                      |
| Gwarancja: 5 / 10 lat     | tak / opcjonalnie                                                                                                                                |
| Certyfikaty i zezwolenia  |                                                                                                                                                  |
| Regulacja sieci           | IEC 62040, VDE-AR-N 4105, VDE 0126, UTE C 15-712, C10/C11,<br>EN50549, CEI 0-21, CEI 0-16, IEC62116, IEC61727, AS/NZS4777 ,<br>G98, TOR Erzeuger |
| EMC                       | EN61000-6-1, EN61000-6-3                                                                                                                         |
| Bezpieczeństwo            | IEC/EN62109-1, IEC/EN62109-2                                                                                                                     |

#### 12.2 Parametry zacisków wejścia DC

#### Specyfikacja Mc 4:

|                                       | 2.5mm2/14AWG                  | 4mm2/12 AWG | 6mm2/10 AWG | 10mm2/8AWG |
|---------------------------------------|-------------------------------|-------------|-------------|------------|
| Prąd znamionowy<br>(środowisko 90° C) | 32A                           | 40A         | 44A         | 65A        |
| Nominalne napięcie<br>systemowe       | 1000V DC(UL)<br>1000V DC(TUV) |             |             |            |
| Oporność styku                        | $0.25m\Omega(model)$          |             |             |            |
| Stopień ochrony                       | IP68                          |             |             |            |

| Materiały styku gniazda            | Miedź, cyna                       |
|------------------------------------|-----------------------------------|
| Materiały izolacyjne               | Tworzywa termoplastyczne UL94 V-0 |
| Zakres temperatury otoczenia       | -40 °C to +90 °C                  |
| Długość ściągania izolacji z drutu | 7.0mm(9/32)                       |
| Średnica obudowy kabla             | 4.5 to 7.8mm(3/16: to 5/16")      |

#### 12.3 Moment obrotowy

| Śruby górnej pokrywy | 1.3Nm(10.8 1bf.in) |
|----------------------|--------------------|
| Muszelka             | 0.7Nm(6.2 1bf.in)  |
| Złącze Dc            | 1.8Nm(16.0 1bf.in) |
| Śrubokręt M6         | 2Nm(18 1bf.in)     |
| Śruba uziemiająca    | 2Nm(18 1bf.in)     |

#### 12.4 Załącznik

Poniższy wykres przechowywania maszyny, opcjonalny wykaz załączników, jeśli istnieje potrzeba prosimy o kontakt z Growatt New Energy Technology Co, Ltd lub zamówień dealerów.(P. / N jest tylko dla odniesienia, i może być zmieniony)

| Nazwa                              | Opis                                 | GROWATT P/N     |
|------------------------------------|--------------------------------------|-----------------|
| Używane do zapisywania danych w UE |                                      | MR00.00 11 200  |
|                                    | Używane do zapisu danych w Australii | MR00.00 113 00  |
| Shine Wi-Fi                        | Używane do zapisu danych             | MR00.00 110 00  |
| GPRS                               | Używane do zapisu danych             | MR00.00 11 80 1 |

### 13 Certyfikat

### Growatt SPH seria falownika i zastosowanie w zakresie świata, falownik musi spełniać standardy bezpieczeństwa w różnych krajach i regionach.

| Model             | Certifikat                                                                                                                                                                                               |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Growatt-SPH seria | IEC 62040, VDE-AR-N 4105, VDE 0126, UTE C 15-712,<br>C10/C11,EN50549, CEI 0-21, CEI 0-16, IEC62116,<br>IEC61727, AS/NZS4777, G98, TOR Erzeuger,EN61000-6-<br>1, EN61000-6-3,IEC/EN62109-1, IEC/EN62109-2 |

Załącznik:

AutoTest (tylko w przypadku Włoch)

Poniżej przedstawiono schemat Auto Testu, patrz 6.4.4. na powierzchni ustawienia "Auto Test". Nacisnąć przycisk "enter", upewnić się, że auto test został uruchomiony poprzez naciśnięcie przycisku "enter" przez 3 sekundy. Na wyświetlaczu LCD pojawi się następujący komunikat.



### 14 Kontakt

| Jeśli masz problemy techniczne dotyczące naszych produktów, skontaktuj się z |
|------------------------------------------------------------------------------|
| linią serwisową Growatt lub sprzedawcą.                                      |
| Potrzebujemy następujących informacji, aby zapewnić Ci niezbędną pomoc:      |
| 1.Falownik SPH Numer seryjny.                                                |
| 2.Informacje o module falownika SPH.                                         |
| 3.Tryb komunikacji z falownikiem SPH.                                        |
| <ol><li>Kod informacyjny błędu falownika SPH.</li></ol>                      |
| 5.Falownik SPH Zawartość wyświetlacza.                                       |
| 6.Producent i model baterii.                                                 |
| 7.Pojemność baterii i tryb podłączenia.                                      |
|                                                                              |
|                                                                              |

#### Shenzhen Growatt New Energy Co., Ltd

4-13/F,Building A,Sino-German(Eope) Industrial Park, Hangcheng Ave, Bao'an District, Shenzhen, China

- **T** +86 0755 2747 1942
- E service@ginvertecom
- W www.ginverter.com